排序方式: 共有75条查询结果,搜索用时 0 毫秒
21.
风力发电机组滚动轴承工况往往比较恶劣,其故障振动加速度信号具有非平稳、非线性的特性,而传统的时频域方法提取故障特征时存在不准确、适应性差等问题,针对此提出一种基于局部均值分解(LMD)和形态学分形维数的特征提取算法,并结合极限学习机(ELM)完成风电机组轴承故障诊断。该方法同时考虑滚动轴承在不同损伤程度以及不同故障类型下的情况,首先将原始振动信号进行LMD自适应分解为一系列不同频率的乘积分量(PF);接着计算所有分量与原信号的相关性系数,选择相关系数值最大的前3个PF分量作为敏感变量;并利用形态学覆盖估计所选PF分量的分形维数,构建故障特征向量组;之后将其作为ELM的输入,将轴承状态作为输出,建立ELM轴承状态识别模型。最后使用西储大学平台轴承数据和实际风场采集故障数据对算法进行验证,结果表明,该方法能够有效识别轴承不同损伤程度以及不同故障,整体识别率达到99%以上。 相似文献
22.
为及时准确地预测风电机组整机性能,文章基于风功率数据提出了一种考虑工况波动的相似性度量算法,结合概率和模糊理论评估机组健康状态。该方法基于聚类思想对风功率数据进行数据预处理和工况划分,针对工况子空间的正常样本与测试样本,基于主成分分析法以第二主成分方向上投影变量的标准差作为样本相似性度量指标,依据概率不确定性融合得到综合健康状态指标,量化机组性能的退化程度。结合机组性能实际退化过程,依据模糊理论确定健康状态隶属度,基于隶属度最大原则和信度准则判断机组健康状态等级。将该方法应用于某具有小样本数据的实例中,可提前两周获知风电机组发生异常,对机组健康状态的过渡过程作出了准确评估,验证了所提方法的可行性。 相似文献
23.
基于多阶段动态PCA的发酵过程故障监测 总被引:1,自引:1,他引:1
针对间隙发酵过程具有多阶段、批次不等长,且过程动态非线性往往与发酵阶段密切相关等特点,提出一种基于多阶段动态主元分析(principal component analysis,PCA)的故障监测策略.该方法采用高斯混合模型(Gaussian mixture model,GMM)对过程数据进行聚类,能客观反映不同阶段操作模态的数据分布特点,可实现子阶段划分.针对各批次阶段划分后存在的不同步问题,采用动态时间错位(dynamic time warping,DTW)方法对各阶段进行轨迹同步,对同步后的子阶段建立动态PCA模型.最后以工业青霉素发酵过程和重组大肠杆菌制备白介素-2发酵过程为背景,采用多阶段动态PCA策略对其进行故障监测,发现算法能有效降低运行过程的漏报和误报率,验证了算法的有效性。 相似文献
24.
针对化工过程数据复杂、非线性的特点,提出一种基于核熵成分分析(KECA)的化工过程故障监测算法。首先,KECA算法按照Renyi熵值的大小选取特征值及特征向量,相比传统的KPCA监测算法,其保留主元个数更少,可以有效减少运算量。同时,仿真研究表明KECA算法选取的主元具有角度结构特性,据此,提出一种新的统计量--CS(Cauchy-Schwarz)统计量,其对应到核特征空间中即为向量间的角度余弦值,可以较好表述不同概率密度分布之间的相似度。最后,将KECA和KPCA算法分别应用于TE(Tennessee Eastman)过程,结果表明KECA在故障检测延迟与检出率相比KPCA都有很大的优势。 相似文献
25.
对于电池供电的便携式系统,电池的节能调度是提高系统性能的重要因素,而建立精确实用的电池模型是研究电池节能调度算法的必要前提。提出了一种电池建模方法,即在每个单位时间内模拟电池的基本行为,通过行为的叠加实现对电池整个放电过程的跟踪。仿真和实验结果均证明了建模方法的正确性,同时亦表明方法具有建模简单、模型精度较高等优点。针对现有的电池节能算法往往存在增加系统复杂度、影响系统实时性等缺点,文中提出两种改进的电池节能调度算法,并在电池模型上进行了仿真验证。结果显示,改进后的算法更易于实现,且在满足系统实时性能前提下,达到较好的节能效果。 相似文献
26.
针对樽海鞘群算法寻优迭代过程中存在容易陷入局部最优、收敛速度慢的问题,提出一种改进的樽海鞘群算法.引入Tent混沌映射初始化种群来提高算法迭代前期的收敛速度,通过惯性权值"阶梯式"调整策略来更好地兼顾算法全局探索能力和局部开发能力,通过模拟退火增强樽海鞘群算法迭代后期跳出局部最优解的能力,以基准测试函数和磁导航自动导引车模糊控制器参数寻优问题为例测试了算法性能.仿真结果表明,对于单峰和多峰测试函数,改进后的樽海鞘群算法具有更快的收敛速度和更强的全局寻优能力.相比较标准樽海鞘群算法的参数调节法,改进后的樽海鞘群算法所设计的磁导航自动导引车模糊控制器对磁偏差值控制性能更为优化,在控制器设计方面具有潜在的应用价值. 相似文献
27.
针对轴承的工况复杂,其振动信号呈现非线性、非平稳特性。传统算法不能充分挖掘出非线性、非平稳信号内部本质信息,提出了基于局部切空间排列算法(LTSA)与核熵成份分析(KECA)相结合的故障诊断方法。该方法首先将滚动轴承振动信号一维时间序列重构到高维相空间,并估计数据的本征维数;然后利用局部切空间排列算法对数据集进行维数约简,得到初始的低维流形结构特征向量空间的第一行特征,对其进行快速傅里叶变换(FFT),从其频谱中分别提取滚动轴承内环、外环的故障特征频率及它们分别对应的倍频和频谱能量等7个变量作为故障特征向量;最后采用KECA对滚动轴承的故障特征向量进行模式识别,KECA可实现根据熵值大小进行特征分类,具有较强的非线性处理能力,从而实现故障的识别与诊断。采用Case Western Reserve大学提供的轴承实验数据对算法进行了验证,结果表明该方法可有效提取滚动轴承的故障特征,可以对滚动轴承的故障类型精确分类,实现对滚动轴承准确的故障诊断。 相似文献
28.
针对齿轮箱复合故障振动信号易受到背景噪声干扰,使得传统方法对复合故障冲击特征难以准确分离的问题,提出一种自适应最大二阶循环平稳盲解卷积(ACYCBD)与1.5维导数增强谱相结合的复合故障诊断方法。首先,利用循环谱分析检测复合故障振动信号中与故障特征相关的循环频率成分,构建不同目标类型的循环频率集;之后,根据不同类型的循环频率集,提出一种以三阶累积量稀疏度(TCS)为指标,自适应地选取最大二阶循环平稳盲解卷积(CYCBD)的最优滤波器长度的改进算法,从而更好地获得包含不同故障冲击成分的CYCBD最优滤波信号;最后,提出一种新的1.5维导数谱进行特征增强,提高信噪比,并分析谱图中突出的故障特征频率进而判别故障类型。通过仿真信号与故障实验平台数据对算法进行验证,结果表明该方法能够实现齿轮箱复合故障的准确分离与诊断。 相似文献
29.
针对滚动轴承在新工况下无标记数据且存在噪声干扰问题,提出一种具备抗噪能力的滚动轴承故障诊断领域自适应深度残差收缩网络(DADRSN)。首先,采用深度残差收缩网络(DRSN)去除已知工况和新工况数据噪声冗余并充分提取数据特征;其次,应用迁移学习中的领域自适应(DA)方法,计算已知工况和新工况数据的局部最大均值差异(LMMD),以对齐两种工况数据之间的分布;最后,对新工况下故障样本进行分类。实验结果表明,该模型在噪声干扰、缺少标记数据、工况变化的情况下仍能保持较高的故障诊断精度。 相似文献
30.
为了实现大肠杆菌发酵过程菌体浓度基于模型的优化控制,提出一种基于最小二乘支持向量机(LS_SVM)在线建立大肠杆菌发酵过程局部模型的方法.该方法首先将当前批次滑动时间窗内采集到的数据作为查询序列,以动态时间弯曲距离(DTW)为判断时间序列相似性的标准,从历史批次数据库中搜索与之相似度最高的数据区间,组成训练样本集.然后利用LS_SVM在线建立发酵过程的局部模型.最后通过实际的大肠杆菌发酵过程数据,对本建模方法与传统的LS_SVM离线全局建模方法进行了仿真验证.结果显示,本方法在线建立的大肠杆菌发酵过程菌体浓度预估模型具有更高的精度以及动态适应能力. 相似文献