首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   6篇
化学工业   7篇
金属工艺   1篇
能源动力   2篇
轻工业   2篇
一般工业技术   7篇
自动化技术   2篇
  2023年   1篇
  2021年   2篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2003年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
11.
12.
Nanocomposites of natural rubber (NR) and unmodified clay were prepared by latex compounding method. Phenolic resin (PhOH) was used to crosslink NR. Crosslinked neat NR was also prepared for comparison. The structure–property relationship of uncrosslinked and crosslinked NR/clay nanocomposites was examined to verify the reinforcement mechanism. Microstructure of NR/clay nanocomposites was studied by using transmission electron microscopic (TEM), X‐ray diffraction (XRD), wide angle X‐ray diffraction (WAXD), and small angle X‐ray scattering (SAXS) analyses. The results showed the evidence of intercalated clay together with clay tactoids for the nanocomposite samples. The highest tensile strength was achieved for the crosslinked NR/clay nanocomposite. The onset strain of deformation induced the crystallization of NR for nanocomposites was found at almost the same strain, and furthermore their crystallization was developed at lower strain than that of the crosslinked neat NR because of the clay orientation and alignment. However, at high strain region, the collaborative crystallization process related to the clay dispersion and conventional crosslink points in the NR was responsible to considerably high tensile strength of the crosslinked NR/clay nanocomposite. Based on these analyses, a mechanistic model for the strain‐induced crystallization and orientational evolution of a network structure of PhOH‐crosslinked NR/clay nanocomposite was proposed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42580.  相似文献   
13.
Electron backscattered diffraction (EBSD) was used to document the microstructure and texture developed due to cross deformation of commercial purity 1050 aluminum alloy. The materials are first deformed in equal channel angular pressing die (ECAP) to different number of passes; 1,4, 8, 12, and 16 passes, via route BC and then deformed in plane strain compression (PSC) to two axial true plastic strain values of 0.5 and 1.0. Deformation path change was proven to be a very effective tool for manipulating the evolution of microstructure and microtexture. The study provides a documentation of the evolution of microstructure parameters namely cell size, misorientation angle, fraction of submicron grain size, and fraction of high angle grain boundaries. These microstructure parameters were investigated on two planes; the plane normal to the loading direction in PSC (RD–TD) and that plane normal to the transverse direction (RD–ND). These microstructure parameters are compared to those achieved due to the ECAP process only. The ideal rolling texture orientations are depicted and crystal orientation maps were generated. The spatial distribution of grains having these orientations is revealed through these maps. The fraction of the main texture components for a 10° spread around the specified orientations is experimentally calculated and a quantitative idea on the evolution of microtexture is also presented.  相似文献   
14.
A laminated piezoelectric bimorph actuator with a graded compositional distribution of PZT and Pt was fabricated, and its deflection characteristics were evaluated. Using experimentally determined compositional dependency of elastic and piezoelectric properties in the PZT/Pt composites, the modified classical lamination theory and the finite element method were applied to find the optimum compositional profile that will give a larger deflection and smaller stress, simultaneously. The miniature bimorph-type graded actuator that consists of a composite internal-electrode (PZT/30 vol% Pt) and three piezoelectric layers of different compositions (PZT/0–20 vol% Pt) were fabricated by powder stacking and sintering. The deflection of the actuator was measured using electric strain gages mounted on the top and bottom surfaces of the actuator. The deflection was found to strongly depend on the composition distribution profile. Under an applied electric field of 100 V m–1, the actuator with an optimum composition profile exhibited a curvature of up to 0.03 m–1, which is a satisfactory performance for this kind of actuators. The stress generated on actuation was estimated to be as low as 0.4 MPa, which is much smaller than those of conventional directly bonded actuators and will assure a long actuation life.  相似文献   
15.
Nanocomposite foams were fabricated from 60/40 wt% ethylene vinyl acetate (EVA)/natural rubber (NR) blends by using azodicarbonamide as a blowing agent. Two different nanofillers (sodium montmorillonite and organoclay) were employed to study their effects on foam properties. The results were also compared with conventional (china clay)‐filled foams. Transmission electron microscopy, X‐ray diffraction, scanning electron microscopy, and three‐dimensional Microfocus X‐ray computed tomography scanning analysis were performed to characterize the EVA/NR blend morphology and foam structures. The results revealed that the nanofiller acted as a blend compatibilizer. Sodium montmorillonite was more effective in compatibilization, generating better phase‐separated EVA/NR blend morphology and improving foam structure. Higher filler loading increased the specific tensile strength of rubber foams. The rubber nanocomposite foam showed superior specific tensile strength to the conventional rubber composite foam. The elastic recovery and compressive strength of the nanocomposite foams decreased with increasing filler content, whereas the opposite trend was observed for the conventional composite foams with china clay. The thermal conductivity measurement indicated that the nanofiller had better beneficial effect on thermal insulation over china clay filler. From the present study, the nanofillers played an important role in obtaining better blend morphology as compatibilizer, rather than the nucleating agent and the nanofiller content of 5 phr (parts by weight per hundred parts of rubber) was recommended for the production of EVA/NR nanocomposite foams. J. VINYL ADDIT. TECHNOL., 21:134–146, 2015. © 2014 Society of Plastics Engineers  相似文献   
16.
A confocal microscope provides a sequence of images, at incremental depths, of the various corneal layers and structures. From these, medical practioners can extract clinical information on the state of health of the patient's cornea. In this work we are addressing problems associated with capturing and processing these images including blurring, non-uniform illumination and noise, as well as the displacement of images laterally and in the anterior–posterior direction caused by subject movement. The latter may cause some of the captured images to be out of sequence in terms of depth. In this paper we introduce automated algorithms for classification, reordering, registration and segmentation to solve these problems. The successful implementation of these algorithms could open the door for another interesting development, which is the 3D modelling of these sequences.  相似文献   
17.
The high-temperature deformation of a 5.5% Mg and 0.6% Ca modified 5083 aluminum alloy was investigated in the temperature range from 573 to 723 K at strain rates in the range of 10−5-10−1 s−1. Ca was added to form an insoluble second phase in the range of temperatures tested to improve the high-temperature characteristics of this alloy. It was shown that the deformation behavior of the alloy could be divided into two regions with stress exponent, n of 3.5 and 13 at low and high strain rates, respectively. The apparent activation energy determined in both regions suggested that the deformation process is diffusion controlled in both regions. The slightly high value of n at the low-strain rate region (viscous glide) was attributed to the presence of threshold stress. The values of threshold stress showed an exponential increase with decreasing temperature and a dependence with an energy term Qo = 16.5 kJ mol−1. Analysis of creep data in terms of threshold stress and using diffusivity of Mg in normalizing the strain rates, revealed two types of deformation behavior. At high values of normalized strain rate a high value of stress exponent of = 10 is observed, and the exponential law creep takes place. At low normalized strain rates ≤10−9, the n value is 3 and the true activation energy, Q, is equal to 123 kJ mol−1 suggesting viscous glide of dislocations as rate-controlling mechanism. Enhanced ductility has been observed in the region of viscous-glide controlled deformation as a result of high strain-rate sensitivity.  相似文献   
18.
Countries are trying to reduce their energy consumption, fossil fuel usage, and greenhouse gas emissions. Recent guidelines generated by various government agencies indicate an increase in the fuel economy, with a reduction in green house gases. The use of both alternative fuel vehicles and renewable energy sources is thus necessary toward achieving this goal. This paper proposes a hydrogen fueling infrastructure design for the Northeastern United States. The design provides an implementation plan for a period of 13 years (from 2013 to 2025). This design gives priority to customer convenience with minimum additional investments for its implementation. Extensive research has been conducted on generating a hydrogen supply from factories and other potential sources that can satisfy demand in the region. Markers (e.g. population density, traffic density, legislation, and growth pattern) have driven the process of demand estimation.  相似文献   
19.
Commercial purity aluminum (1050) was processed via equal channel angular pressing (ECAP) to one, two, and four passes using route Bc in a 90° channel die, and subsequently compressed in plane strain in two different loading directions, and to two different strain levels. One of the plane-strain-loading directions is parallel to the ECAP forward direction, while the other is perpendicular to it. The flow response in plane-strain compression of the ECAP processed samples revealed an anisotropic behavior, one loading direction systematically gave higher flow stresses. A strain path change parameter was calculated for the two deformation schemes, to justify this anisotropic behavior. Texture evolution, of the plane-strain-compressed samples, was measured, and a transition to the rolling texture was always evidenced. The evolution of the main ideal rolling-texture components obtained from such a combination of deformation schemes, ECAP and plane-strain compression, is presented.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号