In a wireless multihop broadcasting scenario, a number of relay nodes may cooperate the source node in order to improve the capacity of the network. However, the imposition of total energy and maximum hop constraints to this system in a practical setting. In this paper, we study an ad-hoc network with infinitely many nodes and analytically find the number and positions of rebroadcasting relay nodes to achieve the optimal broadcast capacity. The interference due to multiple transmissions in the same geographical area is taken into account. According to the results of this theoretical model, we propose two heuristics, one distributed and one centralized, as suboptimal but practical solutions to the relay selection problem in wireless multihop broadcasting. We discuss the broadcast capacity performances and CSI (channel state information) requirements of these algorithms. The results illustrate that the benefits of peer-assisted broadcasting are more pronounced in the centralized relay selection algorithm when compared to the fully randomized and distributed selection under a realistic system model. 相似文献
The gallium sulphide cubane compounds [(Me2EtC)GaS]4 and [(Et2MeC)GaS]4, have been synthesised, and their potential as MOCVD precursors for GaS is discussed. The molecular structure of [(Et2MeC)GaS]4 has been determined by X-ray diffraction. In addition, the vapour phase structure of the GaSe precursor, [(tBu)GaSe]4 has been determined by gas phase electron diffraction and is compared with that previously determined in the solid state by X-ray diffraction. 相似文献
A method for the fixation of colloids by an ion-layer-gas-reaction-“ILGAR”-oxide layer is presented. The embedding of CdS nano-particles in an ILGAR-ZnO/Zn(OH)2-matrix is confirmed by transmission electron micrographs (TEM); the composition of the layer surface is analyzed by X-ray photoelectron microscopy (XPS). When these particles are fixed by an ILGAR-oxide layer on top of a solar cell the observed absorption and fluorescing properties of CdS nano-particles offer the possibility to reduce the absorption loss in the window layer. This is shown for a Cu(In,Ga)(S,Se)2-“CIGSSe”-based solar cell with an additional top CdSparticle/ILGAR-ZrO2-layer as a first example. The improvement of the device performance is proven by J(V)-characteristics and the external quantum efficiency. 相似文献
An exergy-based thermoeconomic optimization application is applied to a subcooled and superheated vapor compression refrigeration system. The advantage of using the exergy method of thermoeconomic optimization is that various elements of the system—i.e., condenser, evaporator, subcooling and superheating heat exchangers—can be optimized on their own. The application consists of determining the optimum heat exchanger areas with the corresponding optimum subcooling and superheating temperatures. A cost function is specified for the optimum conditions. All calculations are made for three refrigerants: R22, R134a, and R407c. Thermodynamic properties of refrigerants are formulated using the Artificial Neural Network methodology. 相似文献
Successful interface engineering requires compositional and electronic material characterization as a prerequisite for understanding and intentionally generating interfaces in photovoltaic devices. The paper gives an overview with several examples, all referring to Cu(In,Ga)(S,Se)2 (“CIGSSe”)-based solar cells, with an emphasis on characterization using highly specialized methods, such as elastic recoil detection analysis, X-ray emission spectroscopy and photoelectron spectroscopy using synchrotron and ultraviolet light for excitation, inverse photoemission spectroscopy and Kelvin probe force microscopy. First, the determination of the depth profile of the band gap energy Eg in the absorber layer is demonstrated. The modification of Eg towards both interfaces is discussed in terms of beneficial electronic effects. Next, the interface between absorber and buffer layers with alternative and promising non-toxic materials is considered. Between CIGSSe and a ZnSe buffer deposited by the metalorganic chemical vapor deposition (MOCVD) method a buried ZnS interface was found. For a Zn(O,OH) buffer processed with an ion layer gas reaction (ILGAR) the correlation of surface composition, valence band maximum and efficiency of the resulting solar cell is shown. In addition, another approach is considered where a ZnMgO window layer is sputtered directly on the absorber omitting any buffer layer. The determination of the potential distribution at the ZnMgO/CIGSSe interface supports the understanding of this new and simpler way to get good cell performances even without any buffer. Finally, monolithically integrated solar modules without encapsulation were investigated before and after accelerated aging tests and changes at the interconnects were identified. 相似文献
The aim of the study is to classify single trial electroencephalogram and to estimate active regions/locations on skull in unfamiliar/familiar face recognition task. For this purpose, electroencephalographic signals were acquired from ten subjects in different sessions. Sixty-one familiar and fifty-nine unfamiliar face stimuli were shown to the subjects in the experiments. Since channel responses are different for familiar and unfamiliar classes, the channels discriminating the classes were investigated. To do so, three distances and four similarity measures were employed to assess the most distant channel pairs between familiar and unfamiliar classes for a 1-s time duration; 0.6 s from the stimulus to 1.6 s in a channel selection process. It is experimentally observed that this time interval is maintaining the greatest distance between two categories. The electroencephalographic signals were classified using the determined channels and time interval to measure accuracy. The best classification accuracy was 81.30% and was obtained with the Pearson correlation as channel selection method. The most discriminative channel pairs were selected from prefrontal regions. 相似文献
In the mass assembly of today’s electronic circuits, solder paste is first printed onto the surface of the assembly boards through a metal mask called a stencil. The possible surface differences in level on the PWB, e.g. marking stickers or other protruding objects keep the stencil away from the PWB during stencil printing, can cause excessive printed volume of the solder paste, and solder bridges or other soldering failures can occur after reflow soldering. If these differences in level are not too high or they are sufficiently far from the soldering pads in lateral direction, the stencil can bend down to the pad during stencil printing and the volume of the deposited solder paste will be as expected.In our research a Finite Element Model (FEM) was created to investigate the stencil deformation and to determine the necessary distance between the pads and the local differences in level to achieve complete stencil contact to the PWB. A simple deformation measuring set-up was designed and fitted together to experimentally determine the mechanical parameters of the stencil and the squeegee, which were necessary for the FEM. PWB surface differences in level in the range of 0–90 μm and stencil foil thicknesses varying between 75 and 175 μm were inserted into the FEM as geometrical parameters and simulations were executed to calculate the minimum distances which are necessary to achieve perfect stencil contact to the PWB. The FEM was verified by comparing simulation results to experimental results obtained by real stencil printing. 相似文献
Radio-frequency identification (RFID) is an up-and-coming technology. The major limitations of RFID technology are security and privacy concerns. Many methods, including encryption, authentication and hardware techniques, have been presented to overcome security and privacy problems. This paper focuses on authentication protocols. The combination of RFID technology being popular but unsecure has led to an influx of mutual authentication protocols. Authentication protocols are classified as being fully fledged, simple, lightweight or ultra-lightweight. Since 2002, much important research and many protocols have been presented, with some of the protocols requiring further development. The present paper reviews in detail recently proposed RFID mutual authentication protocols, according to the classes of the authentication protocols. The protocols were compared mainly in terms of security, the technique that they are based on, protocols that the presented protocol has been compared with, and finally, the method of verifying the protocol. Important points of the comparisons were collected in two tables.
Temperature dependences of the series resistance in the Cr/n-Si/Au-Sb Schottky structures prepared by electrodeposition method have been studied using current-voltage (I-V) characteristics in the 80-320 K temperature range by steps of 20 K. However, the values of series resistance obtained from Cheung functions were compared with each other, and it was seen that there is a good agreement between the values of the series resistance. A modified Norde’s function combined with conventional forward I-V method was used to extract the parameters including barrier height and the series resistance. The barrier height and series resistance obtained from Norde’s function were compared with those from Cheung functions. The values of barrier height and series resistance have very different especially towards to the lower temperatures. This is attributed to non-ideal I-V characteristics of the Cr/n-Si/Au-Sb Schottky structure and non-pure thermionic emission theory due to the low temperature effects. 相似文献