首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1318篇
  免费   80篇
  国内免费   2篇
电工技术   15篇
综合类   1篇
化学工业   386篇
金属工艺   34篇
机械仪表   50篇
建筑科学   37篇
矿业工程   4篇
能源动力   23篇
轻工业   219篇
水利工程   12篇
石油天然气   11篇
无线电   64篇
一般工业技术   282篇
冶金工业   123篇
原子能技术   11篇
自动化技术   128篇
  2024年   4篇
  2023年   20篇
  2022年   40篇
  2021年   67篇
  2020年   30篇
  2019年   44篇
  2018年   51篇
  2017年   62篇
  2016年   60篇
  2015年   30篇
  2014年   44篇
  2013年   97篇
  2012年   78篇
  2011年   70篇
  2010年   69篇
  2009年   65篇
  2008年   55篇
  2007年   54篇
  2006年   46篇
  2005年   32篇
  2004年   30篇
  2003年   28篇
  2002年   42篇
  2001年   24篇
  2000年   17篇
  1999年   22篇
  1998年   56篇
  1997年   36篇
  1996年   28篇
  1995年   24篇
  1994年   17篇
  1993年   14篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   7篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   3篇
  1977年   2篇
  1976年   4篇
  1975年   1篇
排序方式: 共有1400条查询结果,搜索用时 15 毫秒
41.
This work reports the development of a novel class of affinity co-polymeric materials using supercritical fluid technology. Polymeric materials with molecular recognition to flufenamic acid, were first synthesized in supercritical carbon dioxide (scCO2) using the drug as template. Molecularly imprinted co-polymers of methacrylic acid (MAA) or N-isopropyl acrylamide (NIPAAm) crosslinked with ethylene glycol dimethacrylate (EGDMA) were synthesized using different crosslinking degrees and template:monomer ratios, at 65 °C and 21 MPa. High-pressure NMR experiments confirmed that the nature of the interactions between the drug and the functional monomers during the polymerization step are mainly hydrogen bonds. scCO2-assisted impregnation revealed that the imprinted matrices were able to uptake higher amounts of flufenamic acid. This effect was particularly evidenced in the more crosslinked matrices, with P(MAA-EGDMA) imprinted copolymers binding up to 101.5 mg drug/g polymer against only 50.5 mg/g in the non-imprinted copolymer. In vitro drug delivery experiments showed that imprinted co-polymers release the drug in a more sustained way than the corresponding non-imprinted matrices. Overall it was shown that supercritical fluid technology is a viable approach for the development of self-assembly molecular recognition polymers with potential application in controlled drug delivery systems.  相似文献   
42.
43.
44.
45.
We reported the synthesis of copper (I)-selenophene-2-carboxylate (CuSC) and application as new catalyst in the cross-coupling reactions of thiols with aryl iodide to afford the corresponding unsymmetrical thioethers. The optimized reaction conditions were applied to thiols and aryl iodides having a wide range of functional groups, including electron rich and electron poor substrates. The chemoselectivity of the reaction with 4-iodobromobenzene and 2-aminothiophenol derivatives was briefly examined through the competitive iodine versus bromine and thiol versus nitrogen cross-coupling.  相似文献   
46.
LaNiO3 coatings on nickel-foam supports were prepared by brush painting. The electrochemical properties were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Comparative studies were performed with LaNiO3-pelleted electrodes. The roughness factors were determined by CV and found to be 5,208 ± 350 and 4,037 ± 250 for the pelleted and coated electrodes, respectively. EIS measurements confirm the results obtained by CV. Values lower than 0.3 were calculated for the morphology factors for both electrodes, indicating low electrochemical porosity. The experimental method used in this work to synthesise the oxide coupled with the use of Ni foam as support has proved to be very effective in producing oxide electrodes with surface areas higher than those referred to in relevant literature.  相似文献   
47.
Mid-infrared spectroscopy, in association with multivariate chemometric techniques, was employed for pattern recognition and the determination of the composition of waste frying oils (WFO); data are presented in terms of the percentage of soybean oil, palm oil and hydrogenated vegetable fat in frying oil blends. Principal component analysis (PCA) was performed using spectral data (3,000–600 cm−1) to discriminate between the samples containing 100% soybean oil, 100% palm oil, 100% hydrogenated vegetable fat groups and their blends. Additionally, the results indicated that partial least squares (PLS) models based on mid-infrared spectra were suitable as practical analytical methods for predicting the oil contents in WFO blends. PLS models were validated by a representative prediction set, and the root mean square errors of prediction (RMSEP) were 2.8, 4.7 and 5.5% for palm oil, soybean oil and hydrogenated vegetable fat, respectively. The proposed methodology can be very useful for the rapid and low cost determination of waste frying oil composition while also aiding in decisions regarding the management of oil pretreatment and production routes for biodiesel production.  相似文献   
48.
Water-soluble polymer flocculants have been used to efficiently release entrapped water in oil sands tailings by bridging fine particles to create large heavier flocs which can then settle faster and release water more efficiently. Due to their initial interaction with the fine particles suspended in tailings, polymer nanofibres may perform better than their parent polymers because of the entire surface of the nanofibres being fully accessible to the fine particles. In this work, commercially available poly(acrylamide-co-diallyl dimethylammonium chloride) was chosen as a basis for this study. Initial settling rate, supernatant turbidity, water recovery, capillary suction time, and solids content were measured to determine the effect of polymer nanofibres on solid-liquid separation. The solid forms of the polymer (either as nanofibre or powder) perform better than the polymer solution in each test, with optimum dosages of 5 wt% mature fine tailings (MFT) loading. Nanofibres could achieve settling rates of 60 m/h, while the other forms were only able to achieve 42 m/h. Additionally, the turbidity of the supernatant obtained after flocculation with nanofibres was 15 nephelometric turbidity units (NTU), while the polymer solution and powder produced turbidites of 162 NTU and 70 NTU, respectively. In addition, polymer nanofibres and powders generated larger flocs compared to the polymer solution, which produced small, homogenized flocs.  相似文献   
49.
Niobium (Nb) and Tantalum (Ta) are used to increase materials' mechanical resistance and produce lighter alloys. Worldwide Nb production reached 78 000 t in 2020. The reduced ore offer justifies the recycling of these metals from tin slag, contributing to the circular economy. Nb2O5 and Ta2O5 extraction either from the primary source or the tin slag is an industrial challenge. Nb and Ta dissolution processes already implemented are fluoride leaching, sulphuric leaching, alkaline leaching, and alkaline roasting. The fluoride process raises environmental concerns about waste control. The sulphuric method can be managed to have higher Nb and Ta extraction in a less aggressive process, if some changes are implemented, such as increasing the number of extraction steps, decreasing the pulp density, or increasing the temperature; however, the efficiency of this methodology must be tested for tin slag. The alkaline method seems to be more selective to Nb and Ta by reactants and temperature control. Despite those well-established Nb and Ta treatments, they must be adapted to recover Nb and Ta from slag. The slag has low Nb and Ta content, while high Si and Ca concentrations exist in the matrix. This paper brings the main methods used to extract the Nb and Ta from the primary resources and an overview of Nb and Ta recovery from the slag. This investigation comes as a tool to guide the development of new methods to recover Nb and Ta from low-grade sources such as tin slag.  相似文献   
50.
Reactor blends of polyethylene/poly(ethylene-co-1-octene) resins with bimodal molecular weight and bimodal short chain branching distributions were synthesized in a two-step polymerization process. The compositions of these blends range from low molecular weight (LMW) homopolymer to high molecular weight (HMW) copolymer and, vice versa, HMW homopolymer to LMW copolymer. The physical properties of the blends were found to be consistent with the nature of the individual components. For the tensile properties, the stiffness decreases with increasing the fraction of the copolymer, regardless of the molecular weight of the homopolymer fraction. For these blends with bimodal microstructures, it was confirmed that the degree of crystallinity governs the stiffness of the polymer. However, the energy dampening properties of the polymers benefit from the presence of the copolymer. A balance of stiffness and toughness can be obtained by altering the composition of the blends. For some blends, the presence of HMW homopolymer can dominate the tensile properties, showing little variation in the stiffness with increased addition of copolymer. It was also demonstrated that the testing conditions and thermal treatment of the polymer greatly influence the resulting elastic and energy dampening properties. Depending on the desired application, annealing these polymers (especially very low density copolymers) not only increases the crystallinity and stiffness, but also changes the frequency response of the dynamic mechanical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号