This paper analyzes the rapid and unexpected rise of deep learning within Artificial Intelligence and its applications. It tackles the possible reasons for this remarkable success, providing candidate paths towards a satisfactory explanation of why it works so well, at least in some domains. A historical account is given for the ups and downs, which have characterized neural networks research and its evolution from “shallow” to “deep” learning architectures. A precise account of “success” is given, in order to sieve out aspects pertaining to marketing or sociology of research, and the remaining aspects seem to certify a genuine value of deep learning, calling for explanation. The alleged two main propelling factors for deep learning, namely computing hardware performance and neuroscience findings, are scrutinized, and evaluated as relevant but insufficient for a comprehensive explanation. We review various attempts that have been made to provide mathematical foundations able to justify the efficiency of deep learning, and we deem this is the most promising road to follow, even if the current achievements are too scattered and relevant for very limited classes of deep neural models. The authors’ take is that most of what can explain the very nature of why deep learning works at all and even very well across so many domains of application is still to be understood and further research, which addresses the theoretical foundation of artificial learning, is still very much needed.
A new method suitable for the on-line monitoring of adsorption column saturation/regeneration cycles was developed based on the discovery that the electrical resistance of adsorbents changes dramatically upon adsorption and returns to its original value upon desorption, and that this change can be measured reliably. The phenomenon was demonstrated on four different adsorbent/adsorbate systems, on both single particles and in a packed bed between parallel plates. The observed phenomenon was studied on the carbon/CO2 system in more detail, because of the availability of extensive literature data. It was found that the resistance change in this system correlated with the amount of CO2 adsorbed. The correlation was used to construct an adsorption isotherm based on resistance change data. 相似文献
We investigate the generation of squeezing and entanglement for the motional degrees of freedom of ions in linear traps, confined by time-varying and oscillating potentials, comprised of a DC and an AC component. We show that high degrees of squeezing and entanglement can be obtained by controlling either the DC or the AC trapping component (or both), and by exploiting transient dynamics in regions where the ions’ motion is unstable, without any added optical control. Furthermore, we investigate the time-scales over which the potentials should be switched in order for the manipulations to be most effective. 相似文献
The present research was devoted to studying the kinetics of the artificial rancidification of peanut oil (PO) when a sample of this oil was isothermally heated at 180 °C in an air stream. The formation of radical species due to heating was evaluated using a radical index whose value was determined using a biosensor method based on a superoxide dismutase (SOD), while the increasing toxicity was monitored using a suitable toxicity measuring probe based on the Clark electrode and immobilized yeast cells. 相似文献
In this work, the crossflow microfiltration (CFMF) performance of different lots of lager beer, produced in a pilot scale at the Italian Brewing Research Centre (CERB, Perugia, Italy), was assessed in a bench-top plant, equipped with a 0.8-μm ceramic tubular membrane module, under constant crossflow velocity of 6 m s?1, transmembrane pressure difference of 3.74 bar, temperature of ~10 °C, and periodic CO2 backflushing. By feeding different beer samples (i.e., as such, precentrifuged (C), or pretreated with a commercial enzyme preparation to degrade the original arabinoxylans and β-glucans and then centrifuged (EC) to minimize the fouling contribution of yeast cells, aggregates, and polysaccharides), it was possible to increase the average permeation flux (expressed as mean value?±?standard deviation) from 112?±?13 to 199?±?17 or 330?±?22 L m?2 h?1, respectively. Only when using the EC-pretreated beer specimens, the permeate turbidity at 20 °C approached the limiting one (<0.6 EBC unit) recommended by the European Brewery Convention standards. As expected, the permeate chill haze at 0 °C was generally higher than the above haze target. By submitting EC-pretreated beer seeded with 0.5 g L?1 of regenerable polyvinylpolypyrrolidone (PVPP) to CFMF, it was possible to reduce the initial total polyphenol content by 30 % and permeate chill haze to 0.60?±?0.01 EBC unit, but the average permeation flux fell to 84?±?4 L m?2 h?1. By performing sequentially EC pretreatments, PVPP stabilization, cartridge filtration, and CFMF, it was possible not only to re-enhance the average permeation flux at about 230 L m?2 h?1 near to those achievable with DE filters, but also to obtain a chill haze-free permeate ready for aseptic packaging. 相似文献