首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18829篇
  免费   207篇
  国内免费   19篇
电工技术   266篇
综合类   19篇
化学工业   2610篇
金属工艺   449篇
机械仪表   253篇
建筑科学   408篇
矿业工程   36篇
能源动力   272篇
轻工业   419篇
水利工程   87篇
石油天然气   29篇
无线电   1130篇
一般工业技术   2461篇
冶金工业   1019篇
原子能技术   169篇
自动化技术   9428篇
  2024年   147篇
  2023年   192篇
  2022年   379篇
  2021年   459篇
  2020年   370篇
  2019年   316篇
  2018年   303篇
  2017年   256篇
  2016年   377篇
  2015年   311篇
  2014年   646篇
  2013年   719篇
  2012年   1305篇
  2011年   2883篇
  2010年   1516篇
  2009年   1346篇
  2008年   1090篇
  2007年   987篇
  2006年   761篇
  2005年   813篇
  2004年   735篇
  2003年   773篇
  2002年   459篇
  2001年   122篇
  2000年   116篇
  1999年   123篇
  1998年   194篇
  1997年   155篇
  1996年   105篇
  1995年   83篇
  1994年   73篇
  1993年   91篇
  1992年   53篇
  1991年   50篇
  1990年   50篇
  1989年   37篇
  1988年   44篇
  1987年   42篇
  1986年   34篇
  1985年   42篇
  1984年   37篇
  1983年   32篇
  1982年   27篇
  1981年   27篇
  1980年   23篇
  1979年   19篇
  1978年   28篇
  1977年   24篇
  1976年   60篇
  1975年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In this paper, we propose a method which can be used to decompose a 2D or 3D constraint problem into a C-tree. With this decomposition, a geometric constraint problem can be reduced into basic merge patterns, which are the smallest problems we need to solve in order to solve the original problem in certain sense. Based on the C-tree decomposition algorithm, we implemented a software package MMP/Geometer. Experimental results show that MMP/Geometer finds the smallest decomposition for all the testing examples efficiently.  相似文献   
992.
This paper proposes a topological hierarchy-based approach to toolpath planning for multi-material layered manufacturing (MMLM) of heterogeneous prototypes. The approach facilitates control of MMLM and increases the fabrication efficiency of complex objects by generating multi-toolpaths that avoid redundant tool movements and potential collisions. It uses a topological hierarchy-sorting algorithm to group complex multi-material slice contours into families connected by a parent-and-child relationship. Subsequently, a sequential toolpath planning algorithm generates multi-toolpaths for sequential deposition of materials without redundant tool movements. To reduce build time further, a concurrent toolpath planning algorithm generates collision-free multi-toolpaths to control the tools that deposit materials concurrently. It uses parametric polygons to construct tool envelopes for contour families of the same material property to simplify detection of tool collisions. The tightness of polygons can be controlled to suit the processing speed and the optimality of the resulting concurrent toolpaths. The proposed approach has been implemented as an integral part of a multi-material virtual prototyping (MMVP) system that can process complex slice contours for planning, stereoscopic simulation, and validation of multi-toolpaths. It may be adapted for subsequent control of MMLM processes.  相似文献   
993.
In this paper, we address the problem of comparing and classifying protein surfaces with graph-based methods. Comparison relies on matching surface graphs, extracted from the surfaces by considering concave and convex patches, through a kernelized version of the Softassign graph-matching algorithm. On the other hand, classification is performed by clustering the surface graphs with an EM-like algorithm, also relying on kernelized Softassign, and then calculating the distance of an input surface graph to the closest prototype. We present experiments showing the suitability of kernelized Softassign for both comparing and classifying surface graphs.  相似文献   
994.
As a result of the growing demand for accurate and reliable personal authentication, biometric recognition, a substitute for or complement to existing authentication technologies, has attracted considerable attention. It has recently been reported that, along with its variants, BioHashing, a new technique that combines biometric features and a tokenized (pseudo-) random number (TRN), has achieved perfect accuracy, having zero equal error rates (EER) for faces, fingerprints and palmprints. There are, however, anomalies in this approach. These are identified in this paper, in which we systematically analyze the details of the approach and conclude that the claim of having achieved a zero EER is based upon an impractical hidden assumption. We simulate the claimants’ experiments and find that it is not possible to achieve their reported performance without the hidden assumption and that, indeed, the results are worse than when using the biometric alone.  相似文献   
995.
The issue of material handling involves the design and operative control of warehousing systems (i.e., distribution centres), which allow matching vendors and demands, smoothing with seasonality, consolidating products and arranging distribution activities. Warehousing systems play a crucial role in providing efficiency and customer satisfaction. The warehouse design entails a wide set of decisions, which involve layout constraints and operative issues that seriously affect the performances and the overall logistics costs.  相似文献   
996.
Boundary-conformed toolpath generation for trimmed free-form surfaces   总被引:1,自引:0,他引:1  
In this paper, we adopt a 2D reparameterization procedure to regenerate boundary-conformed toolpaths. Three methods for the 2D reparameterization of trimmed boundaries in parametric space are examined and compared. They are the Coons method, the Laplace method, and a newly developed boundary-blending method. These three methods represent three different approaches to 2D surface parameterization, namely, the algebraic interpolation approach, the partial differential equation approach, and a geometric offsetting approach, respectively. Complete algorithms for surface reparameterization and toolpath generation are developed and implemented. The results showed that the Coons method is relatively simple yet might cause anomalies when the complexities of the boundary are high. The Laplace method is robust but takes relatively more computational time and also has the problem of uneven distribution of iso-parametrics. For the newly developed boundary-blending method, both the computational efficiency and parameterization robustness are quite good, in addition, it alleviates the uneven distribution problem appeared in the Laplace results.  相似文献   
997.
There are manufacturing applications where a tool needs to move along a prescribed path performing machining operations. An excellent application of this problem is found in the increasingly popular layered manufacturing (LM) methods, where the laser traces the profile of a layer by moving along the path while the laser turns on. The path is typically described by a sequence of curves. For the entire process, the tool must move along each curve exactly once. For typical paths, significant time may be wasted in the movement between the end point of one curve to the start point of the next one along which the laser is turned off. Normally, this non-cutting motion is a straight-line motion so to minimize the distance. A good process plan would minimize the time wasted on such motion. A maximum linear intersection (MLI) algorithm is proposed to solve this problem. Next, we present a variation of the GA based method to solve it. We compare the performance of these two techniques, both in terms of jumping distance and the computing time requirement, with a view to their application to real-time path planning in LM applications.  相似文献   
998.
We consider the well-studied pattern recognition problem of designing linear classifiers. When dealing with normally distributed classes, it is well known that the optimal Bayes classifier is linear only when the covariance matrices are equal. This was the only known condition for classifier linearity. In a previous work, we presented the theoretical framework for optimal pairwise linear classifiers for two-dimensional normally distributed random vectors. We derived the necessary and sufficient conditions that the distributions have to satisfy so as to yield the optimal linear classifier as a pair of straight lines.In this paper we extend the previous work to d-dimensional normally distributed random vectors. We provide the necessary and sufficient conditions needed so that the optimal Bayes classifier is a pair of hyperplanes. Various scenarios have been considered including one which resolves the multi-dimensional Minskys paradox for the perceptron. We have also provided some three-dimensional examples for all the cases, and tested the classification accuracy of the corresponding pairwise-linear classifier. In all the cases, these linear classifiers achieve very good performance. To demonstrate that the current pairwise-linear philosophy yields superior discriminants on real-life data, we have shown how linear classifiers determined using a maximum-likelihood estimate (MLE) applicable for this approach, yield better accuracy than the discriminants obtained by the traditional Fisher's classifier on a real-life data set. The multi-dimensional generalization of the MLE for these classifiers is currently being investigated.  相似文献   
999.
This paper presents a new polygonal approximation method using ant colony search algorithm. The problem is represented by a directed graph such that the objective of the original problem becomes to find the shortest closed circuit on the graph under the problem-specific constraints. A number of artificial ants are distributed on the graph and communicate with one another through the pheromone trails which are a form of the long-term memory guiding the future exploration of the graph. The important properties of the proposed method are thoroughly investigated. The performance of the proposed method as compared to those of the genetic-based and the tabu search-based approaches is very promising.  相似文献   
1000.
In this paper, we present a method called MODEEP (Motion-based Object DEtection and Estimation of Pose) to detect independently moving objects (IMOs) in forward-looking infrared (FLIR) image sequences taken from an airborne, moving platform. Ego-motion effects are removed through a robust multi-scale affine image registration process. Thereafter, areas with residual motion indicate potential object activity. These areas are detected, refined and selected using a Bayesian classifier. The resulting regions are clustered into pairs such that each pair represents one object's front and rear end. Using motion and scene knowledge, we estimate object pose and establish a region of interest (ROI) for each pair. Edge elements within each ROI are used to segment the convex cover containing the IMO. We show detailed results on real, complex, cluttered and noisy sequences. Moreover, we outline the integration of our fast and robust system into a comprehensive automatic target recognition (ATR) and action classification system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号