首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9076篇
  免费   550篇
  国内免费   21篇
电工技术   125篇
综合类   18篇
化学工业   2359篇
金属工艺   171篇
机械仪表   207篇
建筑科学   321篇
矿业工程   36篇
能源动力   223篇
轻工业   402篇
水利工程   68篇
石油天然气   28篇
无线电   758篇
一般工业技术   2287篇
冶金工业   982篇
原子能技术   78篇
自动化技术   1584篇
  2023年   153篇
  2022年   374篇
  2021年   418篇
  2020年   285篇
  2019年   246篇
  2018年   301篇
  2017年   255篇
  2016年   349篇
  2015年   298篇
  2014年   438篇
  2013年   550篇
  2012年   547篇
  2011年   623篇
  2010年   423篇
  2009年   412篇
  2008年   433篇
  2007年   416篇
  2006年   324篇
  2005年   252篇
  2004年   222篇
  2003年   201篇
  2002年   192篇
  2001年   122篇
  2000年   113篇
  1999年   119篇
  1998年   193篇
  1997年   155篇
  1996年   105篇
  1995年   83篇
  1994年   73篇
  1993年   90篇
  1992年   53篇
  1991年   50篇
  1990年   50篇
  1989年   37篇
  1988年   44篇
  1987年   40篇
  1986年   34篇
  1985年   42篇
  1984年   38篇
  1983年   32篇
  1982年   27篇
  1981年   27篇
  1980年   23篇
  1979年   19篇
  1978年   28篇
  1977年   24篇
  1976年   60篇
  1975年   28篇
  1971年   19篇
排序方式: 共有9647条查询结果,搜索用时 15 毫秒
81.
Control over magnetite (Fe3O4) formation is difficult to achieve in synthetic systems without using non‐aqueous media and high temperatures. In contrast, Nature employs often intrinsically disordered proteins to tightly tailor the size, shape, purity, and organization of the nanocrystals to optimize their magnetic properties. Inspired by such “flexible polyelectrolytes,” here random copolypeptides having different amino acid compositions are used as control agents in the bioinspired coprecipitation of magnetite through a ferrihydrite precursor, following a recently developed mineralization protocol. Importantly, the copolypeptide library is designed such that the amino acid composition can be optimized to simultaneously direct the size of the nanoparticles as well as their dispersibility in aqueous media in a one‐pot manner. Acidic amino acids are demonstrated to regulate the crystal size by delaying nucleation and reducing growth. Their relative content thus can be balanced to tune between the superparamagnetic and ferrimagnetic regimes, and high contents of negatively charged amino acids result in colloidal stabilization of superparamagnetic nanoparticles at high pH. Conversely, with positively charged lysine‐rich copolypeptides ferrimagnetic crystals are obtained which are stabilized at neutral pH and self‐organize in chains, as visualized by cryo‐transmission electron microscopy. Altogether, the presented findings give important insights for the future development of additive‐mediated nanomaterial syntheses.  相似文献   
82.
Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity, biodistribution, and clearance. In this study, gold nanotubes with controlled length and tunable absorption in the near‐infrared (NIR) region have been exploited for applications as photothermal conversion agents and in vivo photoacoustic imaging contrast agents. A length‐controlled synthesis has been developed to fabricate gold nanotubes (NTs) with well‐defined shape (i.e., inner void and open ends), high crystallinity, and tunable NIR surface plasmon resonance. A coating of poly(sodium 4‐styrenesulfonate) (PSS) endows the nanotubes with colloidal stability and low cytotoxicity. The PSS‐coated Au NTs have the following characteristics: i) cellular uptake by colorectal cancer cells and macrophage cells, ii) photothermal ablation of cancer cells using single wavelength pulse laser irradiation, iii) excellent in vivo photoacoustic signal generation capability and accumulation at the tumor site, iv) hepatobiliary clearance within 72 h postintravenous injection. These results demonstrate that these PSS‐coated Au NTs have the ideal attributes to develop their potential as effective and safe in vivo imaging nanoprobes, photothermal conversion agents, and drug delivery vehicles. To the best of knowledge, this is the first in vitro and in vivo study of gold nanotubes.  相似文献   
83.
This paper is a first‐hand summary on our comprehensive live trial of cellular‐assisted device‐to‐device (D2D) communications currently being ratified by the standards community for next‐generation mobile broadband networks. In our test implementation, we employ a full‐featured 3GPP LTE network deployment and augment it with all necessary support to provide real‐time D2D connectivity over emerging Wi‐Fi‐Direct (WFD) technology. As a result, our LTE‐assisted WFD D2D system enjoys the required flexibility while meeting the existing standards in every feasible detail. Further, this paper provides an account on the extensive measurement campaign conducted with our implementation. The resulting real‐world measurements from this campaign quantify the numerical effects of D2D functionality on the resultant system performance. Consequently, they shed light on the general applicability of LTE‐assisted WFD solutions and associated operational ranges.  相似文献   
84.
In this paper, we investigated the influence of steam treatment on structural group composition of resins and asphaltenes of heavy oil. The object of investigation was oil-saturated rocks from Riphean-Vendian complex. The extracted crude oil was determined as a high-viscous fluid. The resins and asphaltenes destructed in a small extent due to thermal treatment. The oil-soluble iron-based catalyst intensified the destructive processes. The content of sulfur compounds (-SO) in resins and asphaltenes drastically decreased due to reduction reaction of sulfoxide to sulfide and hydrogen sulfide. The results showed that catalytic aquathermolysis, even at low temperature ranges, promoted the cracking reaction of most macromolecular components and increased the content of light fractions of heavy oil. Consequently, it reduced its viscosity.  相似文献   
85.
When partially stabilized zirconia with 6 mol% MgO and 4 mol% CaO is aged at 1450°C, intragranular precipitation occurs and concurrently the boundaries between the grains migrate, forming a Ca-enriched precipitate-free cubic phase and large tetragonal precipitates behind them. At these compositions and temperature the boundary migration is rapid and shows the characteristics of a discontinuous coarsening. A uniaxial compressive stress applied to this specimen during the aging treatment increases or decreases the migration rate of the boundaries parallel or perpendicular to the stress axis, respectively, in agreement with the prediction that a compressive coherency strain due to the diffusion of Ca atoms is produced at the surface of the retreating grains and drives the migration. The diffusional coherency strain energy is thus expected to be the dominant driving force for the discontinuous coarsening in this solid.  相似文献   
86.
87.
88.
Establishing techniques to efficiently and nondestructively access the intracellular milieu is essential for many biomedical and scientific applications, ranging from drug delivery, to electrical recording, to biochemical detection. Cell penetration using nanoneedle arrays is currently a research focus area because it not only meets the increasing therapeutic demands of cell modifications and genome editing, but also provides an ideal platform for tracking long‐term intracellular information. Although the precise mechanism driving membrane penetration by nanoneedle arrays is still unclear, the low cytotoxicity, wide range of delivered materials, diverse cell type targets, and simple material structures of nanoneedle arrays make these splendid platforms for cell access. Here, the recent progress in this field is reviewed by examining device architectures and discussing mechanisms for nanoneedle penetration, and the major studies demonstrating the most general applicability of nanoneedle arrays, typical methodologies to access the intracellular environment using nanoneedles with spontaneous or assisted penetration modes, as well as biosafety aspects are presented. This review should be valuable for deeply understanding the materials fabrication principles, device designs, cell penetration methodologies, biosafety aspects, and application strategies of nanoneedle array‐based systems that are of crucial importance for the development of future practical biomedical platforms.  相似文献   
89.
The quality of fresh, chilled and frozen mince made from the flesh of pond-bred silvercarp (Hypophthalmichthys molitrix (Val)) was evaluated. Flavour panel scores for all minces were acceptable and this quality did not deteriorate during storage for one week in a domestic refrigerator (5–6°C) or for one year at ?20°C. The levels of oxidative rancidity (2-thiobarbituric acid analysis) in the minces were consistent with this maintenance of quality. Aerobic plate counts at 25°C of fresh mince rose from 7–9 × 104 to 1.1 × 105 after 6 days' storage at 5–6°C. Coliform and psychrotroph counts rose from 1.0 × 101 and 7–8 × 103 to 5–4 × 102 and 1.3 × 104, respectively. The functional and textural properties of pond-bred silvercarp mince in terms of salt-soluble protein content, water binding capacity and penetrometer values were measured on fresh, refrigerated and frozen samples. All-fish sausages and frankfurters developed from pond-bred silvercarp mince were assessed in laboratory and consumer tests against commercial beef sausages and frankfurters. The fish products competed well and achieved levels of acceptance similar to those of the beef-containing products. Texture measurements revealed slight changes in the fish products during storage for 7 days at 5–6°C. No spoilage was detected in any of the products after a week at 5–6°C. The nutritional advantages of the fish sausages and frankfurters are discussed.  相似文献   
90.
An electrically switchable graphene terahertz (THz) modulator with a tunable-by-design optical bandwidth is presented and it is exploited to compensate the cavity dispersion of a quantum cascade laser (QCL). Electrostatic gating is achieved by a metal grating used as a gate electrode, with an HfO2/AlOx gate dielectric on top. This is patterned on a polyimide layer, which acts as a quarter wave resonance cavity, coupled with an Au reflector underneath. The authors achieve 90% modulation depth of the intensity, combined with a 20 kHz electrical bandwidth in the 1.9–2.7 THz range. The modulator is then integrated with a multimode THz QCL. By adjusting the modulator operational bandwidth, the authors demonstrate that the graphene modulator can partially compensate the QCL cavity dispersion, resulting in an integrated laser behaving as a stable frequency comb over 35% of the operational range, with 98 equidistant optical modes and a spectral coverage ~1.2 THz. This paves the way for applications in the terahertz, such as tunable transformation-optics devices, active photonic components, adaptive and quantum optics, and metrological tools for spectroscopy at THz frequencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号