首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9035篇
  免费   569篇
  国内免费   21篇
电工技术   125篇
综合类   18篇
化学工业   2339篇
金属工艺   170篇
机械仪表   207篇
建筑科学   321篇
矿业工程   36篇
能源动力   223篇
轻工业   402篇
水利工程   68篇
石油天然气   28篇
无线电   758篇
一般工业技术   2286篇
冶金工业   981篇
原子能技术   78篇
自动化技术   1585篇
  2023年   153篇
  2022年   374篇
  2021年   418篇
  2020年   285篇
  2019年   246篇
  2018年   301篇
  2017年   255篇
  2016年   349篇
  2015年   297篇
  2014年   438篇
  2013年   550篇
  2012年   547篇
  2011年   624篇
  2010年   423篇
  2009年   413篇
  2008年   433篇
  2007年   416篇
  2006年   324篇
  2005年   252篇
  2004年   222篇
  2003年   201篇
  2002年   191篇
  2001年   122篇
  2000年   113篇
  1999年   119篇
  1998年   193篇
  1997年   154篇
  1996年   105篇
  1995年   83篇
  1994年   73篇
  1993年   90篇
  1992年   53篇
  1991年   50篇
  1990年   50篇
  1989年   37篇
  1988年   44篇
  1987年   40篇
  1986年   34篇
  1985年   42篇
  1984年   37篇
  1983年   32篇
  1982年   27篇
  1981年   27篇
  1980年   23篇
  1979年   19篇
  1978年   28篇
  1977年   24篇
  1976年   60篇
  1975年   27篇
  1971年   17篇
排序方式: 共有9625条查询结果,搜索用时 0 毫秒
141.
Ternary Ⅲ-Ⅴ nanowires (NWs) cover a wide range of wavelengths in the solar spectrum and would greatly benefit from being synthesized as position-controlled arrays for improved vertical yield,reprodudbility,and tunable optical absorption.Here,we report on successful selective-area epitaxy of metal-particle-free vertical InxGa1-xP NW arrays using metal-organic vapor phase epitaxy and detail their optical properties.A systematic growth study establishes the range of suitable growth parameters to obtain uniform NW growth over a large array.The optical properties of the NWs were characterized by room-temperature cathodoluminescence spectroscopy.Tunability of the emission wavelength from 870 nm to approximately 800 nm was achieved.Transmission electron microscopy and energy dispersive X-ray measurements performed on crosssection samples revealed a pure wurtzite crystal structure with very few stacking faults and a slight composition gradient along the NW growth axis.  相似文献   
142.
Colloidal quantum dots (CQDs) have attracted significant interest for applications in electronic and optoelectronic devices such as photodetectors, light-emitting diodes, and solar cells. However, a poor understanding of charge transport in these nanocrystalline films hinders their practical applications. The photocarrier radiometry (PCR) technique, a frequency-domain photoluminescence method spectrally gated for monitoring radiative recombination photon emissions while excluding thermal infrared photons due to non-radiative recombination, has been applied to PbS CQD thin films for the analysis of charge transport properties. Linear excitation intensity responses of PCR signals were found in the reported experimental conditions. The type and influence of trap states in the coupled PbS CQD thin film were analyzed with PCR temperature- and time-dependent results.  相似文献   
143.
144.
145.
146.
The end market for transparent flexible barrier films is larger than for metallized films. Presently, the market is still dominated by polymeric barrier layers but the used chemicals may be harmful for the environment. An alternative would be transparent thin layers deposited by vacuum deposition techniques using reactive processes. Ceramic materials like silicon oxide or aluminum oxide are used having a film thickness of just ~10 nm, a coating uniformity of +/?5% across and along the film at a barrier performance below 2.0 sccm/m2d for oxygen transmission rate (OTR) and below 1.0 g/m2d for water vapor transmission rate (WVTR) on PET substrates. In this paper, details will be provided about the deposition processes for these barrier layers using thermal evaporation, plasma‐assisted thermal evaporation as well as deposition by electron beam evaporation. An important factor for these high barrier transparent coatings is also to withstand the downstream processes in the whole packaging stream like slitting, lamination, printing etc. One solution is to protect the barrier layers by a Topcoat. For example, off‐line deposition of lacquers is used in field but the market penetration is low due to high process and material costs. An in‐situ Topcoat deposition is a smart solution to overcome this issue saving time and costs. Such an approach will be also described in the presentation and the impact on the performance of the final package will be discussed.  相似文献   
147.
148.
Microscopy has played a central role in the advancement of nanoscience and nanotechnology by enabling the direct visualization of nanoscale structure, leading to predictive models of novel physical behaviors. Electronic and photonic device technologies, whose features and performance are often improved through miniaturization, have particularly benefited from new capabilities in the characterization of material structure and composition. This paper reviews recent applications of atom probe tomography to semiconducting materials with nanoscale architectures that are designed to impart novel properties and device functionality by virtue of their shape and size. A review is necessary because rapid advances in atom probe instrumentation and analysis in the last decade have greatly expanded the utility of atom probe tomography to address scientific questions and technical questions in this area. The paper is organized in terms of the surface topologies of nanoscale architectures. We begin with nominally planar interfaces including thin film heterostructures and superlattices with open surfaces. Distinctive capabilities in the analysis of interfaces are introduced, as are challenges arising from measurement artifacts. We then discuss nanowires and nanowire heterostructures with surfaces that are closed along one dimension, for which atom probe tomography has provided unique and important understandings on the doping processes. Finally, we consider nanocrystals and quantum dots with completely closed surfaces. Along the way, current challenges and opportunities for atom probe tomography are highlighted, and the reader is directed to complementary reviews of more technical aspects of atom probe analysis.  相似文献   
149.
150.
Surface deterioration of concrete subjected to freezing and thawing in combination with deicing salts is one of the most important factors determining the durability of concrete infrastructure in cold climates. The freeze–thaw deicing salt (FTDS) resistance of cementitious materials can be determined by the capillary suction of de-icing chemicals and freeze–thaw (CDF) test. Specimens are subjected to repeated freeze–thaw cycles with simultaneous addition of deicing salt and the amount of material scaled off near the surface is determined. For concretes with adequate FTDS resistance, this test method works very well. However, specimens with unknown performance often experience increased edge scaling. This leads to a falsification of results and consequently to an underestimation of the actual freeze–thaw resistance. In materials research, however, concretes with high levels of surface deterioration are studied in order to investigate various factors of influence on the freeze–thaw resistance of concretes in a targeted manner. This article presents a novel methodology that delivers new information regarding surface deterioration of CDF samples using high-resolution 3D scan data. Change of volume is used to support deterioration results of the standard CDF methodology. Increase of surface area is used to estimate change in roughness of samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号