We describe a novel ion source for analytical mass spectrometry based on femtosecond laser ionization at pressures at and above atmospheric and characterize its performance when coupled to a tandem quadrupole/time-of-flight mass spectrometer. We assess source saturation limits, ionization and sampling efficiencies, the effective ionization volume, and limits of detection. We demonstrate 100% efficient ionization for a set of organic compounds and show that the degree of ion fragmentation over a range of laser powers is favorable compared to electron impact ionization, especially in that a substantial parent ion signal is always observed. We show how collisional cooling plays a role in controlling fragmentation at high pressures and address how ion-molecule chemistry can be controlled or exploited. High-pressure femtosecond laser ionization will allow "universal" and efficient ionization, presenting a research direction that will broaden the options for gas phase analysis beyond the capabilities of electron impact ionization. 相似文献
In this work we investigate the quantization of electromagnetic waves propagating through homogeneous conducting linear media with no charge density. We use Coulomb's gauge to reduce the problem to that of a time-dependent harmonic oscillator, which is described by the Caldirola–Kanai Hamiltonian. Furthermore, we obtain the corresponding exact wave functions with the help of quadratic invariants and of the dynamic invariant method. These wave functions are written in terms of a particular solution of the Milne–Pinney equation. We also construct coherent and squeezed states for the quantized electromagnetic waves and evaluate the quantum fluctuations in coordinates and momentum as well as the uncertainty product for each mode of the electromagnetic field. 相似文献
Hydrogen isotope ratios (2H/H or D/H) of long-chain unsaturated ketones (alkenones) preserved in lake and marine sediments hold great promise for paleoclimate studies. However, compound-specific hydrogen isotope analysis of individual alkenones has not been possible due to chromatographic coelution of alkenones with the same carbon chain length but different numbers of double bonds. Published studies have only reported the deltaD values of the mixture of coeluting alkenones. We developed an efficient procedure to isolate individual alkenones based on double-bond numbers using silica gel impregnated with silver nitrate. The chromatographic procedure is simple, inexpensive, and highly reproducible, offers 87-100% sample recovery, and allows for the first time hydrogen isotopic measurement on individual alkenones. deltaD values of specific di-, tri- and tetraunsaturated C37 alkenones produced by an Emiliania huxleyi culture, as well as those isolated from Greenland lake sediments, differ consecutively by 43-65 per thousand. These findings suggest that alkenones with different numbers of carbon-carbon double bonds express significantly different deltaD values and that coelution of different alkenones may lead to erroneous source water deltaD reconstructions. Our alkenone isolation approach opens a new avenue for paleoclimate reconstructions using hydrogen isotope ratios of individual alkenones. 相似文献
A microfluidic device with integrated surface plasmon resonance (SPR) chemical and biological sensors based on arrays of nanoholes in gold films is demonstrated. Widespread use of SPR for surface analysis in laboratories has not translated to microfluidic analytical chip platforms, in part due to challenges associated with scaling down the optics and the surface area required for common reflection mode operation. The resonant enhancement of light transmission through subwavelength apertures in a metallic film suggests the use of nanohole arrays as miniaturized SPR-based sensing elements. The device presented here takes advantage of the unique properties of nanohole arrays: surface-based sensitivity; transmission mode operation; a relatively small footprint; and repeatability. Proof-of-concept measurements performed on-chip indicated a response to small changes in refractive index at the array surfaces. A sensitivity of 333 nm per refractive index unit was demonstrated with the integrated device. The device was also applied to detect spatial microfluidic concentration gradients and to monitor a biochemical affinity process involving the biotin-streptavidin system. Results indicate the efficacy of nanohole arrays as surface plasmon-based sensing elements in a microfluidic platform, adding unique surface-sensitive diagnostic capabilities to the existing suite of microfluidic-based analytical tools. 相似文献
Due to the everlasting consumer demand for more complex applications, embedded systems have evolved both in terms of complexity and heterogeneity. The architecture of such systems often includes several kinds of different computing resources (DSPs, GPUs, etc.). As a consequence, software designers are facing significant performance and portability issues to target these devices. Software relies more and more on virtualization technologies to maximize portability of applications. In order to balance portability and performance, most virtualization technologies leverage Just-in-time (JIT) compilation to provide runtime optimized code from portable one. Nevertheless, the efficiency of JIT compilation depends on the ability to compensate its overhead with execution speedups of generated code. While most research efforts focus on limiting overhead of JIT compilation phases by reducing their occurrences, this paper investigates opportunities of speeding up JIT compilation itself. We first present a performance analysis of different JIT compilation technologies in order to identify hardware and software optimization opportunities. Second, we propose a solution based on a dedicated processor with specialized instructions for critical functions of JIT compilers. These specialized instructions provide an average 5× speedup on manipulations of associative arrays and dynamic memory allocation. Based on the LLVM framework, we show a 15% overall speedup on code generator’s execution time. Because our specialized instructions are hidden behind standard libraries, we also argue that these instructions may be transparently reused for a wider range of applications. 相似文献
In this paper, we present a high data rate implementation of a digital predistortion (DPD) algorithm on a modern mobile multicore CPU containing an on-chip GPU. The proposed implementation is capable of running in real-time, thanks to the execution of the predistortion stage inside the GPU, and the execution of the learning stage on a separate CPU core. This configuration, combined with the low complexity DPD design, allows for more than 400 Msamples/s sample rates. This is sufficient for satisfying 5G new radio (NR) base station radio transmission specifications in the sub-6 GHz bands, where signal bandwidths up to 100 MHz are specified. The linearization performance is validated with RF measurements on two base station power amplifiers at 3.7 GHz, showing that the 5G NR downlink emission requirements are satisfied.
Lithium–metal fluoride (MF) batteries offer the highest theoretical energy density, exceeding that of the sulfur–lithium cells. However, conversion‐type MF cathodes suffer from high resistance, small capacity utilization at room temperature, irreversible structural changes, and rapid capacity fading with cycling. In this study, the successful application of the approach to overcome such limitations and dramatically enhance electrochemical performance of Li–MF cells is reported. By using iron fluoride (FeF2) as an example, Li–MF cells capable of achieving near‐theoretical capacity utilization are shown when MF is infiltrated into the carbon mesopores. Most importantly, the ability of electrolytes based on the lithium bis(fluorosulfonyl)imide (LiFSI) salt is presented to successfully prevent the cathode dissolution and leaching via in situ formation of a Li ion permeable protective surface layer. This layer forms as a result of electrolyte reduction/oxidation reactions during the first cycle of the conversion reaction, thus minimizing the capacity losses during cycling. Postmortem analysis shows the absence of Li dendrites, which is important for safer use of Li metal anodes. As a result, Li–FeF2 cells demonstrate over 1000 stable cycles. Quantum chemistry calculations and postmortem analysis provide insights into the mechanisms of the passivation layer formation and the performance boost. 相似文献