首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   5篇
电工技术   2篇
化学工业   48篇
金属工艺   7篇
机械仪表   6篇
建筑科学   5篇
能源动力   19篇
轻工业   9篇
水利工程   1篇
无线电   7篇
一般工业技术   29篇
冶金工业   10篇
原子能技术   5篇
自动化技术   15篇
  2023年   3篇
  2022年   3篇
  2021年   8篇
  2020年   7篇
  2019年   3篇
  2018年   6篇
  2017年   6篇
  2016年   7篇
  2014年   2篇
  2013年   9篇
  2012年   17篇
  2011年   12篇
  2010年   9篇
  2009年   8篇
  2008年   12篇
  2007年   11篇
  2006年   5篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  1999年   1篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
11.
This study focused on fabrication of the thermochromic microcapsules and their application to the cotton fabric. In this study, thermochromic systems composed of crystal violet lactone, bisphenol A, and 1-tetradecanol were prepared and microencapsulated by emulsion polymerization method in poly(methyl methacrylate-co-ethylene glycol dimethacrylate-co-glycidyl methacrylate) wall. The microcapsules were analyzed by Fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscope, differential scanning calorimetry, and thermogravimetric analysis. Their thermoregulating property was tested by T-history test. The results revealed that microcapsules with smooth surfaces, core–shell structured, and spherical shape were successfully produced. The latent heat storage capacity of the microcapsules decreased from 202 J g−1 to 167 J g−1 when their shell/core ratio changed from 0.5/1 to 2/1. Microcapsules were adequately had sufficient thermal resistance to the temperatures they will encounter during their application to textile products and their usage. According to the UV–visible spectroscopy analysis and color measurements, the microcapsules exhibited reversible color change from blue to colorless and vice versa. Besides, the microcapsule impregnated fabric was able to absorb latent heat energy of 21.79 J g−1 at around 35 °C and had cooling effect. According to the colorimetric parameters, the fabric was at blue color at room temperature and became colorless when heated to the temperature above the melting point of thermochromic system. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48815.  相似文献   
12.
The excitation energy-dependent nature of Raman scattering spectrum, vibration, electronic or both, has been studied using different excitation sources on as-grown and annealed n- and p-type modulation-doped Ga1 − xInxNyAs1 − y/GaAs quantum well structures. The samples were grown by molecular beam technique with different N concentrations (y = 0%, 0.9%, 1.2%, 1.7%) at the same In concentration of 32%. Micro-Raman measurements have been carried out using 532 and 758 nm lines of diode lasers, and the 1064 nm line of the Nd-YAG laser has been used for Fourier transform-Raman scattering measurements. Raman scattering measurements with different excitation sources have revealed that the excitation energy is the decisive mechanism on the nature of the Raman scattering spectrum. When the excitation energy is close to the electronic band gap energy of any constituent semiconductor materials in the sample, electronic transition dominates the spectrum, leading to a very broad peak. In the condition that the excitation energy is much higher than the band gap energy, only vibrational modes contribute to the Raman scattering spectrum of the samples. Line shapes of the Raman scattering spectrum with the 785 and 1064 nm lines of lasers have been observed to be very broad peaks, whose absolute peak energy values are in good agreement with the ones obtained from photoluminescence measurements. On the other hand, Raman scattering spectrum with the 532 nm line has exhibited only vibrational modes. As a complementary tool of Raman scattering measurements with the excitation source of 532 nm, which shows weak vibrational transitions, attenuated total reflectance infrared spectroscopy has been also carried out. The results exhibited that the nature of the Raman scattering spectrum is strongly excitation energy-dependent, and with suitable excitation energy, electronic and/or vibrational transitions can be investigated.  相似文献   
13.
Aluminum nitride (AlN) hollow nanofibers were synthesized via plasma‐enhanced atomic layer deposition using sacrificial electrospun polymeric nanofiber templates having different average fiber diameters (~70, ~330, and ~740 nm). Depositions were carried out at 200°C using trimethylaluminum and ammonia precursors. AlN‐coated nanofibers were calcined subsequently at 500°C for 2 h to remove the sacrificial polymeric nanofiber template. SEM studies have shown that there is a critical wall thickness value depending on the template's average fiber diameter for AlN hollow nanofibers to preserve their shapes after the template has been removed by calcination. Best morphologies were observed for AlN hollow nanofibers prepared by depositing 800 cycles (corresponding to ~69 nm) on nanofiber templates having ~330 nm average fiber diameter. TEM images indicated uniform wall thicknesses of ~65 nm along the fiber axes for samples prepared using templates having ~70 and ~330 nm average fiber diameters. Synthesized AlN hollow nanofibers were polycrystalline with a hexagonal crystal structure as determined by high‐resolution TEM and selected area electron diffraction. Chemical compositions of coated and calcined samples were studied using X‐ray photoelectron spectroscopy (XPS). High‐resolution XPS spectra confirmed the presence of AlN.  相似文献   
14.
A new polythiophene containing a cholesteryl side chain in the -position was chemically polymerised in nitromethane/carbontetrachloride using FeCl3 as the oxidizing agent. Polymerisation was also achieved by constant current electrolysis in dichloromethane. Subsequently, conducting copolymers of thiophene-3-yl acetic acid cholesteryl ester (CM), PCM1 (obtained from chemical polymerisation method) and PCM4 (obtained from constant current electrolysis) with pyrrole were synthesized using p-toluene sulfonic acid and sodium dodecyl sulfate as the supporting electrolytes via constant potential electrolyses. Characterizations of the samples were performed by CV, FTIR, NMR, DSC, TGA and SEM analyses. Electrical conductivities were measured by the four-probe technique.  相似文献   
15.
This study is focused on the preparation, characterization and thermal properties of microencapsulated n-heptadecane with polymethylmethacrylate shell. The PMMA/heptadecane microcapsules were synthesized as novel solid–liquid microencapsulated phase change material (microPCMs) by emulsion polymerization method. The chemical and thermal characterization of the microPCMs were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The diameters of microPCMs were found in the narrow range (0.14–0.40 μm) under the stirring speed of 2000 rpm. The spherical surfaces of microPCMs were smooth and compact. The DSC results show that microPCMs have good energy storage capacity. Thermal cycling test showed that the microPCMs have good thermal reliability with respect to the changes in their thermal properties after repeated 5000 thermal cycling. TGA analyses also indicated that the microPCMs degraded in three steps and have good thermal stability. Based on all results, it can be considered that the PMMA/heptadecane microcapsules as novel solid–liquid microPCMs have good energy storage potential.  相似文献   
16.
A series of poly(styrene-co-p-stearoyl styrene) copolymers as novel polymeric solid–solid phase-change materials (SSPCMs) were synthesized by the modification of polystyrene with stearoyl chloride. The chemical structure and crystalline morphology of the synthesized copolymers were determined with Fourier transform infrared spectroscopy and polarized optical microscopy, respectively. The thermal energy storage properties and thermal stability of the SSPCMs were investigated with differential scanning calorimetry and thermogravimetric analysis, respectively. In addition, the thermal conductivity of the SSPCMs was measured with a thermal property analyzer. Moreover, thermal cycling tests showed that the copolymers had good thermal reliability and chemical stability after being subjected to 5000 heating/cooling cycles. The synthesized poly(styrene-co-stearoyl styrene) copolymers as novel SSPCMs have considerable potential for thermal energy storage and temperature-control applications. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
17.
The efficiency of ultraviolet/hydrogen peroxide photo‐oxidation processing for enhancing the biodegradability of Reactive Black 5 prior to biological treatment processing of acclimated and non‐acclimated sequencing batch reactors was evaluated. Photo‐oxidation experiments were conducted according to an experimental design method in which aqueous Reactive Black 5 samples with an initial concentration of 200 mg/l were exposed to ultraviolet irradiation for 15, 30 and 60 min in the presence of various concentrations of hydrogen peroxide (250, 500 and 1000 mg/l) at pH 7. Pretreated samples were then subjected to respirometric biodegradability tests using the sludge cultures obtained from acclimated and non‐acclimated sequencing batch reactors for the determination of the kinetic constants of qmax and Ks according to the modified Organisation of Economic Cooperation and Development 209 method. Calculated values of qmax and Ks showed that the acclimated sludge of the sequencing batch reactor showed a better performance than the non‐acclimated sludge in the degradation of photochemically pretreated aqueous Reactive Black 5. The advantage of acclimated sludge compared with non‐acclimated sludge for the biodegradation of Reactive Black 5 diminished when photochemical pretreatment conditions reached higher levels in terms of oxidation time and hydrogen peroxide concentration.  相似文献   
18.
19.
This study presents application of the CMIF and the Hilbert Transform techniques onto simulated response data obtained using a numerical model of a typical school building from Turkey. White noise is added to the data in order to achieve a noise to signal ratio of 5%. 100 Monte Carlo analysis sequences are carried out and the modal parameters (the frequencies, the mode shapes and the damping ratios) are identified at each Monte Carlo run for both techniques. The results are compared with the identifications obtained from the simulated data using stochastic subspace based system identification technique. The overall results of the study show that the mode shapes are clearly identified the best by using the CMIF technique. The damping ratios are estimated better by using the stochastic subspace based system identification technique whereas the frequencies are best determined by the CMIF. The results also show that both the CMIF and the Hilbert Transform techniques are sensitive to the type of window used as well as the averaging and the decimation process. It is apparent that the CMIF technique is as robust as the frequently used stochastic subspace based system identification technique and can be confidently used for modal parameter estimation of stiff low to mid rise reinforced concrete structures.  相似文献   
20.
In this study, ion bombardment in a cathodic arc physical vapor deposition system was applied on WC–Co hard metal surfaces aiming to benefit from the diffusion acceleration effect, and to investigate the role of this effect on the surface composition, morphology and corrosion resistance of the materials. Chromium ions obtained via cathodic arc evaporation were accelerated under low (− 150 V) and high (− 1000 V) bias voltages in order to apply coating–bombardment cycles to sample surfaces. Substrate temperatures were measured by an optical pyrometer during the processes. The treated samples were characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). Temperature measurements showed that the sample temperature could be controlled precisely by adjusting the bias voltage. Temperatures in the range of 750–1200 °C were measured during the treatment depending on the duration of the high bias voltage cycles. XRD analysis showed η phase formation in the near surface regions of all treated samples. The amount of the formed η phase was shown to be dependent on the heating–cooling regime that varied with the applied mode of bias. The corrosion behavior of the samples was investigated by immersing treated and untreated samples in a solution of 5% H3PO4 containing 1 g/l Zn+ 2 for 24 h at 50 °C. The samples were investigated via SEM observations after immersion. Cathodic arc plasma treated samples showed a better resistance to corrosion in this environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号