首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   9篇
  国内免费   1篇
电工技术   1篇
化学工业   59篇
金属工艺   2篇
机械仪表   3篇
建筑科学   5篇
能源动力   8篇
轻工业   60篇
水利工程   1篇
石油天然气   1篇
无线电   2篇
一般工业技术   23篇
冶金工业   10篇
原子能技术   1篇
自动化技术   26篇
  2024年   1篇
  2023年   4篇
  2022年   15篇
  2021年   7篇
  2020年   7篇
  2019年   9篇
  2018年   8篇
  2017年   5篇
  2016年   13篇
  2015年   3篇
  2014年   12篇
  2013年   14篇
  2012年   13篇
  2011年   19篇
  2010年   7篇
  2009年   4篇
  2008年   5篇
  2007年   8篇
  2006年   3篇
  2005年   10篇
  2004年   4篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1998年   2篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1975年   1篇
  1973年   1篇
  1961年   1篇
  1957年   1篇
排序方式: 共有202条查询结果,搜索用时 0 毫秒
81.
The biofunctionalization of nanopatterned surfaces with DNA origami nanostructures is an important topic in nanobiotechnology. An unexplored challenge is, however, to co‐immobilize proteins with DNA origami at pre‐determined substrate sites in high contrast relative to the nontarget areas. The immobilization should, in addition, preferably be achieved on a transparent substrate to allow ultrasensitive optical detection. If successful, specific co‐binding would be a step towards stoichiometrically defined arrays with few to individual protein molecules per site. Here, we successfully immobilize with high specificity positively charged avidin proteins and negatively charged DNA origami nanoplates on 100 nm‐wide carbon nanoislands while suppressing undesired adsorption to surrounding nontarget areas. The arrays on glass slides achieve unprecedented selectivity factors of up to 4000 and allow ultrasensitive fluorescence read‐out. The co‐immobilization onto the nanoislands leads to layered biomolecular architectures, which are functional because bound DNA origami influences the number of capturing sites on the nanopatches for other proteins. The novel hybrid DNA origami‐protein nanoarrays allow the fabrication of versatile research platforms for applications in biosensing, biophysics, and cell biology, and, in addition, represent an important step towards single‐molecule protein arrays.  相似文献   
82.
83.
84.
Mo/TiO2 catalysts were modified with Nb by two different methods, sol–gel and surface deposition, in order to study the effect of Nb incorporation on the thiophene HDS activity. The results show that the formation of Nb–Ti mixed oxides leads to catalysts with poor HDS activity while the deposition of Nb oxide species on the surface of TiO2 leads to catalysts with activities larger than those of Mo/Al2O3 and Mo/TiO2. This increase in activity was attributed to the formation of a larger population of Mo sulfur anionic vacancies when Nb was surface deposited on the TiO2.  相似文献   
85.
In this article, the effects of bio‐oil and epoxidized linseed oil (ELO) on water absorption, tangential swelling, decay and insect resistance, thermo‐gravimetric analysis, and mechanical properties of treated wood samples were studied. The bio‐oil used in this article was by‐product of ThermoWood thermal modification process. Linseed oil and hydrogen peroxide were used to prepare ELO. The results indicated that the samples treated with bio‐oil had lower water absorption than that of the control group. The second treatment with ELO significantly reduced further the water absorption. The decay resistance of treated wood samples with 20% of bio‐oil against brown (Coniophora puteana) and white rot (Trametes versicolor) fungi was very high. According to the insect test results, increasing bio‐oil concentration from 10% to 20% significantly decreased surviving rate of Hylotrupes bajulus. Thermo‐gravimetric analysis showed that all treated samples had higher initial deterioration temperature than that of the control group. Regarding the wood strength, the impregnated bio‐oil generally reduced the mechanical properties of wood except modulus of elasticity (MOE). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1562–1569, 2013  相似文献   
86.
87.
Wheat bran arabinoxylan (WBAX) gels entrapping standard model proteins at different mass ratios were formed. The entrapment of protein affected the gel elasticity and viscosity values, which decreased from 177 to 138 Pa. The presence of protein did not modify the covalent cross-links content of the gel. The distribution of protein through the network was investigated by confocal laser scanning microscopy. In mixed gels, protein aggregates forming clusters were detected at protein/polysaccharide ratios higher than 0.25. These clusters were not homogeneously distributed, suggesting that WBAX and protein are located in two different phases. The apparent diffusion coefficient (Dm) of proteins during release from mixed gels was investigated for mass ratios of 0.06 and 0.12. For insulin, Dm increased significantly from 2.64 × 10−7 to 3.20 × 10−7 cm2/s as the mass ratio augmented from 0.06 to 0.12. No significant difference was found for Dm values of ovalbumin and bovine serum albumin released from the mixed gels. The results indicate that homogeneous protein/WBAX gels can be formed at low mass ratios, allowing the estimation of Dm by using an analytical solution of the second Fick’s law.  相似文献   
88.
It is shown that an addition of Sb2O5 or Nb2O5 (0.05–0.15?mol%) to the system SnO2–CoO–Cr2O3–Bi2O3 leads to the enhancement of grain growth. This effect is associated with the presence of the liquid Bi-phase in ceramics during sintering. The obtained ceramics possess non-linear current-voltage characteristics and can be used for preparing low voltage varistors. The non-linearity coefficient α reaches 22 and the characteristic electric field 692?V/cm for Nb-doped materials and 11 and 421?V/cm respectively for Sb-doped ceramics materials. The results of dc and ac electrical measurements, as well as scanning electron microscopy are presented and discussed in terms of the known barrier model for varistors.  相似文献   
89.
The objective of this work was to study the effect of reagent type on properties of acetylated barley starch (BS) and maize starch (MS) after modification with acetic anhydride (AA) and vinyl acetate (VA) at similar molar concentration for mole of glucose of both reagents. Degree of substitution (DS), morphological characteristics and granule size distribution, gelatinization and retrogradation, pasting properties, and X‐ray diffraction pattern were evaluated. Acetylation disturbs the short and long range order, and the effect was higher with AA than VA, and for BS than MS. This is due to the higher DS determined in AA–BS. In the pasting profile, acetylated starch showed the maximum peak viscosity at lower temperature, this effect was strongest for BS and anhydride acetic‐acetylation. Differential scanning calorimetry showed decrease in gelatinization parameters in acetylated starches (temperatures and enthalpy), and retrogradation was suppressed by acetylation. This effect was stronger in starches acetylated with AA despite their higher DS. This pattern can be explained from the occurrence of surface effects in acetylation with AA.  相似文献   
90.
Limited comprehension of aneurysm pathology has led to inconclusive results from clinical trials. miRNAs are key regulators of post-translational gene modification and are useful tools in elucidating key features of aneurysm pathogenesis in distinct entities of abdominal and popliteal aneurysms. Here, surgically harvested specimens from 19 abdominal aortic aneurysm (AAA) and 8 popliteal artery aneurysm (PAA) patients were analyzed for miRNA expression and histologically classified regarding extracellular matrix (ECM) remodeling and inflammation. DIANA-based computational target prediction and pathway enrichment analysis verified our results, as well as previous ones. miRNA-362, -19b-1, -194, -769, -21 and -550 were significantly down-regulated in AAA samples depending on degree of inflammation. Similar or inverse regulation was found for miR-769, 19b-1 and miR-550, -21, whereas miR-194 and -362 were unaltered in PAA. In situ hybridization verified higher expression of miR-550 and -21 in PAA compared to AAA and computational analysis for target genes and pathway enrichment affirmed signal transduction, cell-cell-interaction and cell degradation pathways, in line with previous results. Despite the vague role of miRNAs for potential diagnostic and treatment purposes, the number of candidates from tissue signature studies is increasing. Tissue morphology influences subsequent research, yet comparison of distinct entities of aneurysm disease can unravel core pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号