首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   1篇
电工技术   1篇
化学工业   40篇
金属工艺   11篇
机械仪表   1篇
建筑科学   4篇
能源动力   5篇
轻工业   10篇
水利工程   2篇
无线电   12篇
一般工业技术   29篇
冶金工业   16篇
原子能技术   2篇
自动化技术   26篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   7篇
  2012年   6篇
  2011年   8篇
  2010年   4篇
  2009年   9篇
  2008年   11篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   6篇
  2001年   6篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   7篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   6篇
  1975年   3篇
  1974年   1篇
  1973年   3篇
排序方式: 共有159条查询结果,搜索用时 31 毫秒
41.
42.
The present study was carried out to assess the weldability properties of ASTM A 537 Cl. 1 pressure-vessel quality steel using the shielded metal arc welding (SMAW) process. Implant and elastic restraint cracking (ERC) tests were conducted under different welding conditions to determine the cold cracking susceptibility of the steel. The static fatigue limit values determined for the implant test indicate adequate resistance to cold cracking even with unbaked electrodes. The ERC test, however, established the necessity to rebake the electrodes before use. Lamellar tearing tests carried out using full-thickness plates under three welding conditions showed no incidence of lamellar tearing upon visual examination, ultrasonic inspection, and four-section macroexamination. Lamellar tearing tests were repeated using machined plates, such that the central segregated band located at the midthickness of the plate corresponded to the heat-affected zone (HAZ) of the weld. Only in one (no rebake, heat input: 14.2 kj cm-1, weld restraint load: 42 kg mm-2) of the eight samples tested was lamellar tearing observed. This was probably accentuated due to the combined effects of the presence of localized pockets of a hard phase (bainite) and a high hydrogen level (unbaked electrodes) in the weld joint. Optimal welding conditions were formulated based on the above tests. The weld joint was subjected to extensive tests and found to exhibit excellent strength (tensile strength: 56.8 kg mm-2, or 557 MPa), and low temperature impact toughness (7.4 and 4.5 kg-m at-20 °C for weld metal, WM, and HAZ) properties. Crack tip opening displacement tests carried out for the WM and HAZ resulted in δm values 0.36 and 0.27 mm, respectively, which indicates adequate resistance to brittle fracture.  相似文献   
43.
Transition metal-based chalcogenide electrocatalysts exhibit a promising level of performance for oxygen reduction reaction applications while offering significant economic benefits over the state of the art Pt/C systems. The most active materials are based on RuxSey clusters, but the toxicity of selenium will most likely limit their embrace by the marketplace. Sulfur-based analogues do not suffer from toxicity issues, but suffer from substantially less activity and stability than their selenium brethren. The structure/property relationships that result in these properties are not understood due to ambiguities regarding the specific morphologies of RuxSy-based chalcogenides. To clarify these properties, an electrochemical kinetics study was interpreted in light of extensive X-ray diffraction, scanning electron microscopy, and in situ X-ray absorption spectroscopy evaluations. The performance characteristics of ternary MxRuySz/C (M = Mo, Rh, or Re) chalcogenide electrocatalysts synthesized by the now-standard low-temperature nonaqueous (NA) route are compared to commercially available (De Nora) Rh- and Ru-based systems. Interpretation of performance differences is made in regards to bulk and surface properties of these systems. In particular, the overall trends of the measured activation energies in respect to increasing overpotential and the gross energy values can be explained in regards to these differences.  相似文献   
44.
45.
46.
The existence of localized activity patterns, or bumps, has been investigated in a variety of spatially distributed neuronal network models that contain both excitatory and inhibitory coupling between cells. Here we show that a neuronal network with purely excitatory synaptic coupling can exhibit localized activity. Bump formation ensues from an initial transient synchrony of a localized group of cells, followed by the emergence of desynchronized activity within the group. Transient synchrony is shown to promote recruitment of cells into the bump, while desynchrony is shown to be good for curtailing recruitment and sustaining oscillations of those cells already within the bump. These arguments are based on the geometric structure of the phase space in which solutions of the model equations evolve. We explain why bump formation and bump size are very sensitive to initial conditions and changes in parameters in this type of purely excitatory network, and we examine how short-term synaptic depression influences the characteristics of bump formation.  相似文献   
47.
Symmetry-breaking formulas for a constraint-satisfaction problem are satisfied by exactly one member (e.g., the lexicographic leader) from each set of symmetrical points in the search space. Thus, the incorporation of such formulas can accelerate the search for a solution without sacrificing satisfiability. We study the computational complexity of generating lex-leader formulas. We show, even for abelian symmetry groups, that the number of essential clauses in the natural lex-leader formula could be exponential. Furthermore, we show the intractability (NP-hardness) of finding any expression of lex-leadership without reordering the variables, even for elementary abelian groups with orbits of size 3. Nevertheless, using techniques of computational group theory, we describe a reordering relative to which we construct small lex-leader formulas for abelian groups.  相似文献   
48.
In a pneumatic tire, the contained air carries the load of the vehicle and also augments performance for other functional requirements, such as, rolling resistance, ride and handling, durability, and so on. The inner liner of the tire is responsible to ensure air retention by virtue of its high air impermeability. The present study focused on developing inner-liner compounds of improved air impermeability by utilizing platelet filler (layered silicate). The obtained organoclay was subjected to a pre-treatment process called exfoliation to increase the d spacing between the clay layers that further improved the morphological aspect of the compound. The inner-liner compound has been modified by partial replacement of carbon black with organically modified bentonite clay in 1:1 and 2.5:1 ratio. Air impermeability of rubber compounds was tested in a gas permeability tester. Field emission scanning electron microscope, transmission electron microscope, atomic force microscope, and x-ray diffraction were utilized to understand the distribution and dispersion of clay in the rubber compounds. Fatigue crack growth analysis was carried out to measure the fatigue life of the materials. The modified compounds exhibited air impermeability improvement from 7% to 30% vs the reference carbon-black filled compound with improved mechanical properties and filler dispersion.  相似文献   
49.
The objective of this study was to develop optical imaging agent loaded biodegradable nanoparticles with indocynanine green (ICG) using chitosan modified poly(L-lactide-co-epsilon-caprolactone) (PLCL):poloxamer (Pluronic F68) blended polymer. Nanoparticles were formulated with an emulsification solvent diffusion technique using PLCL and poloxamer as blend-polymers. Polyvinyl alcohol (PVA) and chitosan were used as stabilizers. The particle size, shape and zeta potential of the formulated nanoparticles and the release kinetics of ICG from these nanoparticles were determined. Further, biodistribution of these nanoparticles was studied in mice at various time points until 24 h following intravenous administration, using a non-invasive imaging system. The average particle size of the nanoparticles was found to be 146 ± 3.7 to 260 ± 4.5 nm. The zeta potential progressively increased from - 41.6 to + 25.3 mV with increasing amounts of chitosan. Particle size and shape of the nanoparticles were studied using transmission electron microscopy (TEM) which revealed the particles to be smooth and spherical in shape. These nanoparticles were efficiently delivered to the cytoplasm of the cells, as observed in prostate and breast cancer cells using confocal laser scanning microscopy. In vitro release studies indicated sustained release of ICG from the nanoparticles over a period of seven days. Nanoparticle distribution results in mice showing improved uptake and accumulation with chitosan modified nanoparticles in various organs and slower clearance at different time points over a 24 h period as compared to unmodified nanoparticles. The successful formulation of such cationically modified nanoparticles for encapsulating optical agents may lead to a potential deep tissue imaging technique for tumor detection, diagnosis and therapy.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号