首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1380篇
  免费   83篇
  国内免费   16篇
电工技术   27篇
综合类   6篇
化学工业   299篇
金属工艺   31篇
机械仪表   65篇
建筑科学   39篇
能源动力   96篇
轻工业   136篇
水利工程   4篇
石油天然气   4篇
武器工业   1篇
无线电   144篇
一般工业技术   329篇
冶金工业   76篇
原子能技术   27篇
自动化技术   195篇
  2024年   2篇
  2023年   42篇
  2022年   97篇
  2021年   106篇
  2020年   87篇
  2019年   86篇
  2018年   107篇
  2017年   65篇
  2016年   81篇
  2015年   50篇
  2014年   70篇
  2013年   104篇
  2012年   57篇
  2011年   82篇
  2010年   39篇
  2009年   54篇
  2008年   45篇
  2007年   45篇
  2006年   27篇
  2005年   33篇
  2004年   16篇
  2003年   8篇
  2002年   6篇
  2001年   10篇
  2000年   7篇
  1999年   11篇
  1998年   20篇
  1997年   12篇
  1996年   8篇
  1995年   7篇
  1994年   12篇
  1993年   7篇
  1992年   3篇
  1991年   9篇
  1990年   5篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   5篇
  1978年   8篇
  1977年   3篇
  1976年   3篇
  1966年   1篇
排序方式: 共有1479条查询结果,搜索用时 15 毫秒
61.
Supercritical fluid extraction (SFE) is a sustainable technique used for the extraction of lipophilic metabolites such as pigments and fatty acids. Arnica plant is considered a potential candidate material with high antioxidant and antimicrobial activities. Therefore, in this study, a locally available Heterotheca inuloides, also known as Mexican arnica, was analyzed for the extraction of high-value compounds. Based on different pressure (P), temperature (T), and co-solvent (CoS), four treatments (T) were prepared. A maximum 7.13% yield was recovered from T2 (T = 60 °C, P = 10 MPa, CoS = 8 g/min), followed by 6.69% from T4 (T = 60 °C, P = 30 MPa, CoS = 4 g/min). Some bioactive sesquiterpenoids such as 7-hydroxycadalene, caryophyllene and δ-cadinene were identified in the extracts by GC/MS. The fatty acid profile revealed that the main components were palmitic acid (C16:0), followed by linoleic acid (C18:2ω6c), α-linolenic acid (C18:3ω3) and stearic acid (C18:0) differing in percent yield per treatment. Antibacterial activities were determined by the agar diffusion method, indicating that all the treatments exerted strong antibacterial activity against S. aureus, C. albicans, and E. coli strains. The antioxidant capacity of the extracts was also measured by three in vitro assays, DPPH, TEAC and FRAP, using Trolox as a standard. Results showed high antioxidant capacity enabling pharmaceutical applications of Mexican arnica.  相似文献   
62.
63.
In this article, we report the emergence of material properties of polyurea over a finite time frame. Due to the rapid isocyanate–amine reaction, polyurea formation occurs practically instantaneously. Despite being an “instant‐curing” system, the material properties of polyurea evolve substantially with time: phenomenon, which warrants a methodical study. The curing process of polyurea formulations, containing both aliphatic and aromatic chain extender, has been studied systematically with an aim to gain insight into the time frame associated with its curing and subsequent stress relaxation. Formulations containing aromatic chain extender mandated relatively lesser time to “gel,” but the complete disappearance of NCO absorbance mandated much longer periods ~7 h. Interestingly, in all the formulations, mechanical properties improved with time and reached their optimal properties over a period of 15 days. This improvement has been attributed to several processes simultaneously occurring within the matrix; the foremost being the relaxation of internal stresses which tend to buildup in the polymer during the spray coating process. In addition, significant changes occur in the internal morphology of segmented polymers, which in turn is a result of H‐bond rearrangement.  相似文献   
64.
A series of epoxidized oils were prepared from rubber seed, soybean, jatropha, palm, and coconut oils. The epoxy content varied from 0.03 to 7.4 wt %, in accordance with the degree of unsaturation of the oils (lowest for coconut, highest for rubber seed oil). Bulk polymerization/curing of the epoxidized oils with triethylenetetramine (in the absence of a catalyst) was carried out in a batch setup (1 : 1 molar ratio of epoxide to primary amine groups, 100°C, 100 rpm, 30 min) followed by casting of the mixture in a steel mold (180°C, 200 bar, 21 h) and this resulted in cross‐linked resins. The effect of relevant pressing conditions such as time, temperature, pressure, and molar ratio of the epoxide and primary amine groups was investigated and modeled using multivariable nonlinear regression. Good agreement between experimental data and model were obtained. The rubber seed oil‐derived polymer has a Tg of 11.1°C, a tensile strength of 1.72 MPa, and strain at break of 182%. These values are slightly higher than for commercial epoxidized soybean oil (Tg of 6.9°C, tensile strength of 1.11 MPa, and strain at break of 145.7%). However, the comparison highlights the potential for these novel resins to be used at industrial/commercial level. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42591.  相似文献   
65.
The incorporation of functionalized nanoscale fillers into traditional glass fiber/unsaturated polyester (GF/UPE) composites provides a more robust mechanical attributes. The current study demonstrates the potential of 3-mercaptopropyl trimethoxysilane (MPTS)-functionalized carbon black (f-CB) for enhancing the thermo-mechanical properties of GF composites. The composites infused with 1, 3 and 5 wt% of pristine and MPTS-functionalized CB were fabricated by hand lay-up and hot press processing. Tensile testing, interlaminar shear strength (ILSS) testing and dynamic mechanical analysis were used to evaluate the performance of nanocomposites. Fourier transform infrared spectroscopy validated the MPTS functionalization of CB. Pristine CB-loaded nanocomposites exhibited marginal improvement in ultimate tensile strength (UTS), ILSS and thermo-mechanical properties. However, with the addition of f-CB, the improvement in all the studied properties was more substantial. The inclusion of 5 wt% f-CB increased the elastic modulus and UTS by 16 and 22%, respectively, whereas the ILSS was enhanced by 36%, in comparison to the neat GF composite. The scanning electron microscope analysis of fractured ILSS samples revealed better fiber-matrix adhesion and compatibility in f-CB-loaded nanocomposites. At the same filler weight percentage, the storage modulus at 25 °C was ~ 19% higher than that of neat composite. The f-CB inclusion resulted in increment of T g by ~ 13 °C over the T g of neat GF/UPE composite (~ 109 °C). These improvements were due to the chemical connection of f-CB to the UPE matrix and GF surface. With such improvements in thermal and mechanical properties, these nanocomposites can replace the conventional GF composites with prominent improvements in performance.  相似文献   
66.
The aim of this study was to investigate the performance of UHMWPE/HDPE-reinforced kenaf, basalt and hybrid kenaf/basalt composites. Mechanical testing of these samples was carried out such as tensile, flexural (three-point bending) and an impact test (Charpy). Pure resin (UHMWPE/HDPE) samples were tested and compare with reinforced 10% weight fraction of kenaf, basalt and hybrid kenaf/basalt samples to identifying their contribution and potential in this new composite material. UHMWPE/ HDPE sample was produced in constant ratio 60:40 respectively via extrusion process. Basalt reinforced UHMWPE/HDPE generates the highest elastic modulus result compared to kenaf and hybrid kenaf/basalt as a reinforcement material. The tensile results of kenaf reinforcement UHMWPE/HDPE samples are significantly higher (20%) than pure blend resin, which is an indication for good performance of kenaf, basalt and hybrid kenaf/basalt to be used in UHMWPE/HDPE-blend polymers. The flexural and Charpy strengths show the drawback results, where performance of polymer is reduced 5% with the absence of kenaf. It can be concluded that kenaf, basalt and hybrid kenaf/basalt fiber successfully increase the UHMWPE/HDPE blends performance especially under tensile loading.  相似文献   
67.

The increasing use of heavy metals, dyes, and other metallic or chemical elements causes crucial environmental pollution. Sewage that contains these heavy metals and dyes is discharged into the atmosphere and goes directly into the food cycle, causing cancerous diseases and health deterioration in living organisms. The supreme concern of today’s research is to treat wastewater and effectively remove the hazardous dye molecules from aqueous media and other environmental matrices. Nowadays, technologies are applied to rectify organic and inorganic pollutants from sewage. Among them, adsorption is a fascinating way because it is environmentally friendly, feasible, and economical biomaterials. Chitosan (CS) as bio-sorbent is endowed with valuable characteristics, such as biodegradability, biocompatibility, high reactivity, low-cost, and functional groups (–OH and NH2) on its surface. CS is used for many applications, either as a single component or composite form. The use of CS as bio-adsorbents is beneficial over regular adsorbents. Chitosan-based hydrogel is one of the very important bio-adsorbents. All these bio-adsorbents are highly used to eradicate toxic dyes, digest harmful industrial sewage, and eliminate pesticides, climatic hazardous waste, and contaminated materials from the environment.

  相似文献   
68.
Microglia/astrocyte and B cell neuroimmune responses are major contributors to the neurological deficits after traumatic spinal cord injury (SCI). Bruton tyrosine kinase (BTK) activation mechanistically links these neuroimmune mechanisms. Our objective is to use Ibrutinib, an FDA-approved BTK inhibitor, to inhibit the neuroimmune cascade thereby improving locomotor recovery after SCI. Rat models of contusive SCI, Western blot, immunofluorescence staining imaging, flow cytometry analysis, histological staining, and behavioral assessment were used to evaluate BTK activity, neuroimmune cascades, and functional outcomes. Both BTK expression and phosphorylation were increased at the lesion site at 2, 7, 14, and 28 days after SCI. Ibrutinib treatment (6 mg/kg/day, IP, starting 3 h post-injury for 7 or 14 days) reduced BTK activation and total BTK levels, attenuated the injury-induced elevations in Iba1, GFAP, CD138, and IgG at 7 or 14 days post-injury without reduction in CD45RA B cells, improved locomotor function (BBB scores), and resulted in a significant reduction in lesion volume and significant improvement in tissue-sparing 11 weeks post-injury. These results indicate that Ibrutinib exhibits neuroprotective effects by blocking excessive neuroimmune responses through BTK-mediated microglia/astroglial activation and B cell/antibody response in rat models of SCI. These data identify BTK as a potential therapeutic target for SCI.  相似文献   
69.
70.
Solid solutions of (1?x)BaTiO3xBi(Mg2/3Nb1/3)O3 (0 ≤ x ≤ 0.6) were prepared via a standard mixed‐oxide solid‐state sintering route and investigated for potential use in high‐temperature capacitor applications. Samples with 0.4 ≤ x ≤ 0.6 showed a temperature independent plateau in permittivity (εr). Optimum properties were obtained for x = 0.5 which exhibited a broad and stable relative εr ~940 ± 15% from ~25°C to 550°C with a loss tangent <0.025 from 74°C to 455°C. The resistivity of samples increased with increasing Bi(Mg2/3Nb1/3)O3 concentration. The activation energies of the bulk were observed to increase from 1.18 to 2.25 eV with an increase in x from 0 to 0.6. These ceramics exhibited excellent temperature stable dielectric properties and are promising candidates for high‐temperature multilayer ceramic capacitors for automotive applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号