首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   4篇
电工技术   1篇
化学工业   24篇
轻工业   1篇
水利工程   1篇
无线电   3篇
一般工业技术   11篇
自动化技术   2篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2015年   3篇
  2014年   6篇
  2013年   4篇
  2011年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2001年   1篇
  2000年   1篇
  1994年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
11.
The aim of the present study was to obtain cross-linked calcium-gellan beads containing diclofenac sodium as model drug, using full 3(3) factorial design. Drug quantity, pH of cross-linking solution, and speed of agitation were selected as variables for factorial design. The resultant beads were evaluated by scanning electron microscopy (SEM), percent yield, entrapment efficiency, micromeritic properties, swelling and drug release studies. The drug-loaded beads were spherical with size range of 0.85-1.8 mm. Percent yield and entrapment efficiency of various batches were in the range of 86.48-98.28% w/w and 72.52-92.74% w/w, respectively. Calcium-gellan beads containing diclofenac sodium showed pH-dependent swelling and drug release properties. Swelling and drug release were significantly higher in pH 7.4 phosphate buffer than 0.1N HCl. The swelling ratio for beads was up to 22 and 3 for phosphate buffer and 0.1N HCl, respectively. Cumulative diclofenac sodium release from calcium-gellan beads was 12-35% in 0.1N HCl within 2 h, whereas complete drug release was observed within 3-4 h in pH 7.4 phosphate buffer.  相似文献   
12.
Meticulous investigation of reactive blending of maleic anhydride grafted styrene–ethylene–butylene–styrene (SEBS-g-MA) and thermoplastic polyurethane (TPU) is carried out to achieve systems with controllable morphology and superior mechanical properties. Two types of SEBS-g-MA (abbreviated as M1, M2) with different maleic anhydride content were used to separately blend with TPU. Formation of imide group from the interaction of isocyanate and maleic anhydride predicted from the plausible reaction scheme was confirmed through Fourier transform infrared spectroscopy. High tensile strength of the blends along with appreciable elongation at break was witnessed. Morphology analyses using scanning electron microscopy and atomic force microscopy exposed a vivid and homogenous droplet morphology in all the blends presumably due to in situ formation of a suitable copolymer at the interface. Differential scanning calorimetry was used to pursue the thermal characteristics of the blends. Melt-rheological behavior of the blends was examined using a rubber process analyzer. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48727.  相似文献   
13.
We propose a method for the detection of masses in mammographic images that employs Gaussian smoothing and sub-sampling operations as preprocessing steps. The mass portions are segmented by establishing intensity links from the central portions of masses into the surrounding areas. We introduce methods for analyzing oriented flow-like textural information in mammograms. Features based on flow orientation in adaptive ribbons of pixels across the margins of masses are proposed to classify the regions detected as true mass regions or false-positives (FPs). The methods yielded a mass versus normal tissue classification accuracy represented as an area (Az) of 0.87 under the receiver operating characteristics (ROCs) curve with a dataset of 56 images including 30 benign disease, 13 malignant disease, and 13 normal cases selected from the mini Mammographic Image Analysis Society database. A sensitivity of 81% was achieved at 2.2 FPs/image. Malignant tumor versus normal tissue classification resulted in a higher Az value of 0.9 under the ROC curve using only the 13 malignant and 13 normal cases with a sensitivity of 85% at 2.45 FPs/image. The mass detection algorithm could detect all the 13 malignant tumors successfully, but achieved a success rate of only 63% (19/30) in detecting the benign masses. The mass regions that were successfully segmented were further classified as benign or malignant disease by computing five texture features based on gray-level co-occurrence matrices (GCMs) and using the features in a logistic regression method. The features were computed using adaptive ribbons of pixels across the boundaries of the masses. Benign versus malignant classification using the GCM-based texture features resulted in Az = 0.79 with 19 benign and 13 malignant cases.  相似文献   
14.
With continuous depletion of petrochemical feedstock and their rising prices, the chemical industry is now looking for alternative renewable and sustainable materials. Such materials could be processed with various chemistries to produce high performance functional materials for a range of applications, such as plastics, coatings, constructions, pharmaceuticals, and food applications. Cardanol derived from cashew nut shell liquid has a reactive phenolic group and aliphatic double bond that could be exploited to produce novel functional materials for polymer and coating applications. It has previously been used for preparation of phenolics, epoxy, and phenalkamine hardeners. In this study, we report on the preparation of novel epoxy resin from cardanol via simple a two-step reaction. The prepared resin with epoxy equivalent weight of 210–220 gm/eq was analyzed using FTIR and NMR spectroscopy. The epoxy resin was then used as binder along with bisphenol-A-based epoxy resin (DGEBPA) at various weight proportions and cured with different amine hardeners. The cured coatings were analyzed for physical, mechanical, and chemical properties for optimization of the coating formulation. The study conducted showed that 40–60% of DGEBPA resulted in comparable properties to that of completely DGEBPA-based system. Further, thermal and anticorrosive properties of the optimized coatings were also evaluated.  相似文献   
15.
Nanofibrous morphology has been observed in ternary blends of low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and isotactic polypropylene (PP) when these were melt‐extruded via slit die followed by hot stretching. The morphology was dependent on the concentration of the component polymers in ternary blend LDPE/LLDPE/PP. The films were characterized by wide angle X‐ray diffraction (XRD), scanning electron microscopy (SEM), and testing of mechanical properties. The XRD patterns reveal that the β phase of PP is obtained in the as‐stretched nanofibrillar composites, whose concentration decreases with the increase of LLDPE concentration. The presence of PP nanofibrils shows significant nucleation ability for crystallization of LDPE/LLDPE blend. The SEM observations of etched samples show an isotropic blend of LDPE and LLDPE reinforced with more or less randomly distributed and well‐defined nanofibrils of PP, which were generated in situ. The tensile modulus and strength of LDPE/LLDPE/PP blends were significantly enhanced in the machine direction than in the transverse direction with increasing LLDPE concentration. The ultimate elongation increased with increasing LLDPE concentration, and there was a critical LLDPE concentration above which it increased considerably. There was a dramatic increase in the falling dart impact strength for films obtained by blow extrusion of these blends. These impressive mechanical properties of extruded samples can be explained on the basis of the formation of PP nanofibrils with high aspect ratio (at least 10), which imparted reinforcement to the LDPE/LLDPE blend. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
16.
Recycling of postconsumer poly (ethylene terephthalate) (PET) is a worldwide concern due to large increasing volume of these materials produced by society. In the present study, we report the effect of gamma irradiation on degradation of PET and its subsequent effect on glycolysis by using excess ethylene glycol (EG). The results as analyzed by molecular weight determination showed that extent of depolymerization of PET were dose dependent. The doses of 30, 50, 70, and 100 kGy resulted in decrease in the molecular weight by about 15%, 25%, 30%, and 40% respectively. The irradiated waste PET samples were further subjected to glycolysis using EG by conventional and microwave method which resulted in increased yield of monomeric product, bis (2‐hydroxyethylterephthalate) (BHET). The recycled material, BHET, was then used in combination with bio‐based monomers to prepare a new eco‐friendly polyester polyol which was analyzed for hydroxyl, saponification, acid value and further characterized by FTIR, 1HNMR, and GPC techniques for molecular weight determination. Polyurethane coatings were prepared from the polyester polyol and various commercial polyisocyanate curing agents. The coated films were evaluated for their performance properties. Thermal properties of coatings were investigated by differential scanning calorimetry and thermogravimetric analysis. POLYM. ENG. SCI., 55:2653–2660, 2015. © 2015 Society of Plastics Engineers  相似文献   
17.
Cardanol-based reactive polyamides with different amine functionalities were successfully developed by conventional polycondensation mechanism. The synthesis involved 2-step processes of functionalization of cardanol by maleic anhydride followed by its condensation with diethylenetriamine in the second step. The polyamides with different molecular weights were prepared by varying the mole ratios of acid and amine components in the formulation. The developed polyamides were characterized for structural confirmation by FTIR and NMR spectroscopy. These polyamides were then used as crosslinker in conventional epoxy zinc-rich primer. The effect of molecular weights of these polyamides on mechanical, chemical, and solvent resistance properties of conventional epoxy zinc-rich primer was studied and compared with that of commercial polyamide. The anticorrosive properties of the primers were evaluated by humidity resistance test, salt spray test and electrochemical impedance spectroscopy. The study revealed that the epoxy zinc-rich primers cured with cardanol-based polyamide resulted in improved mechanical, chemical, and anticorrosive properties as evaluated by various methods.  相似文献   
18.
Surendran  U.  Anagha  B.  Raja  P.  Kumar  V.  Rajan  K.  Jayakumar  M. 《Water Resources Management》2019,33(4):1521-1540

The study aims at evaluating the various drought indices for the humid, semi-arid and arid regions of India using conventional indices, such as rainfall anomaly index, departure analysis of rainfall and other indices such as Standard Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) that were analyzed using the DrinC software. In SPI, arid region has seven drought years, whereas humid and semi-arid regions have four. In case of RDI, the humid and semi-arid regions have 11 drought years, whereas arid regions have 10 years. The difference in SPI and RDI was due to the fact that RDI considered potential evapotranspiration, and hence, correlation with plants would be better in case of RDI. Humid region showed a decreasing trend in initial value of RDI during the drought as compared to semiarid and arid regions and indicated possible climate change impact in these regions. Among all the indices, RDI was considered as an effective indicator because of implicit severity and high prediction matches with the actual drought years. SPI and RDI were found to be well correlated with respect to 3 months rainfall data and SPI values led to prediction of annual RDI. The results of our study established that this correlation could be used for developing disaster management plan well in advance to combat the drought consequences.

  相似文献   
19.
The use of carbon nanotubes has increased in the past few decades. Carbon nanotubes are implicated in the pathogenesis of pulmonary sarcoidosis, a chronic granulomatous inflammatory condition. We developed a murine model of chronic granulomatous inflammation using multiwall carbon nanotubes (MWCNT) to investigate mechanisms of granuloma formation. Using this model, we demonstrated that myeloid deficiency of ATP-binding cassette (ABC) cholesterol transporter (ABCG1) promotes granuloma formation and fibrosis with MWCNT instillation; however, the mechanism remains unclear. Our previous studies showed that MWCNT induced apoptosis in bronchoalveolar lavage (BAL) cells of wild-type (C57BL/6) mice. Given that continual apoptosis causes persistent severe lung inflammation, we hypothesized that ABCG1 deficiency would increase MWCNT-induced apoptosis thereby promoting granulomatous inflammation and fibrosis. To test our hypothesis, we utilized myeloid-specific ABCG1 knockout (ABCG1 KO) mice. Our results demonstrate that MWCNT instillation enhances pulmonary fibrosis in ABCG1 KO mice compared to wild-type controls. Enhanced fibrosis is indicated by increased trichrome staining and transforming growth factor-beta (TGF-β) expression in lungs, together with an increased expression of TGF-β related signaling molecules, interleukin-13 (IL-13) and Smad-3. MWCNT induced more apoptosis in BAL cells of ABCG1 KO mice. Initiation of apoptosis is most likely mediated by the extrinsic pathway since caspase 8 activity and Fas expression are significantly higher in MWCNT instilled ABCG1 KO mice compared to the wild type. In addition, TUNEL staining shows that ABCG1 KO mice instilled with MWCNT have a higher percentage of TUNEL positive BAL cells and more efferocytosis than the WT control. Furthermore, BAL cells of ABCG1 KO mice instilled with MWCNT exhibit an increase in efferocytosis markers, milk fat globule-EGF factor 8 (MFG-E8) and integrin β3. Therefore, our observations suggest that ABCG1 deficiency promotes pulmonary fibrosis by MWCNT, and this effect may be due to an increase in apoptosis and efferocytosis in BAL cells.  相似文献   
20.
Castor oil is a renewable resource that has potential uses as an environmental friendly material for a range of applications. In recent years, much efforts have been driven to develop alternate plasticizer for medical and commodity plastics due to growing concerns about dioctyl phthalate (DOP) for flexible poly(vinyl chloride) (PVC). In this study, a bio‐based plasticizer was synthesized by a two‐step esterification reaction of castor oil fatty acid (COFA) with benzyl alcohol and octanoic acid in the presence of catalyst (dibutyl tin dilaurate). The structure of the octanoic ester (OE) was confirmed by proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, acid value, and hydroxyl value. OE was used as a coplasticizer in PVC for partial replacement of DOP. The addition of OE exhibited good incorporation and plasticizing performance in the PVC sheets. Incorporation of OE resulted in good plasticizing, tensile strength, percentage elongation, exudation, thermal stability, and chemical resistance because of the presence of long carbon chains of COFA. Differential scanning calorimetry (DSC), thermogravimetric analysis, and color measurements were also performed to evaluate the effect of OE. With the increase in OE, DSC and hardness results showed marginal deviation from those obtained for DOP‐plasticized sheets. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40354.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号