ABSTRACTThe aim of the present study was to obtain cross-linked calcium-gellan beads containing diclofenac sodium as model drug, using full 33 factorial design. Drug quantity, pH of cross-linking solution, and speed of agitation were selected as variables for factorial design. The resultant beads were evaluated by scanning electron microscopy (SEM), percent yield, entrapment efficiency, micromeritic properties, swelling and drug release studies. The drug-loaded beads were spherical with size range of 0.85–1.8 mm. Percent yield and entrapment efficiency of various batches were in the range of 86.48–98.28% w/w and 72.52–92.74% w/w, respectively. Calcium-gellan beads containing diclofenac sodium showed pH-dependent swelling and drug release properties. Swelling and drug release were significantly higher in pH 7.4 phosphate buffer than 0.1N HCl. The swelling ratio for beads was up to 22 and 3 for phosphate buffer and 0.1N HCl, respectively. Cumulative diclofenac sodium release from calcium-gellan beads was 12–35% in 0.1N HCl within 2 h, whereas complete drug release was observed within 3–4 h in pH 7.4 phosphate buffer. 相似文献
Cardanol-based reactive polyamides with different amine functionalities were successfully developed by conventional polycondensation mechanism. The synthesis involved 2-step processes of functionalization of cardanol by maleic anhydride followed by its condensation with diethylenetriamine in the second step. The polyamides with different molecular weights were prepared by varying the mole ratios of acid and amine components in the formulation. The developed polyamides were characterized for structural confirmation by FTIR and NMR spectroscopy. These polyamides were then used as crosslinker in conventional epoxy zinc-rich primer. The effect of molecular weights of these polyamides on mechanical, chemical, and solvent resistance properties of conventional epoxy zinc-rich primer was studied and compared with that of commercial polyamide. The anticorrosive properties of the primers were evaluated by humidity resistance test, salt spray test and electrochemical impedance spectroscopy. The study revealed that the epoxy zinc-rich primers cured with cardanol-based polyamide resulted in improved mechanical, chemical, and anticorrosive properties as evaluated by various methods. 相似文献
We propose a method for the detection of masses in mammographic images that employs Gaussian smoothing and sub-sampling operations as preprocessing steps. The mass portions are segmented by establishing intensity links from the central portions of masses into the surrounding areas. We introduce methods for analyzing oriented flow-like textural information in mammograms. Features based on flow orientation in adaptive ribbons of pixels across the margins of masses are proposed to classify the regions detected as true mass regions or false-positives (FPs). The methods yielded a mass versus normal tissue classification accuracy represented as an area (Az) of 0.87 under the receiver operating characteristics (ROCs) curve with a dataset of 56 images including 30 benign disease, 13 malignant disease, and 13 normal cases selected from the mini Mammographic Image Analysis Society database. A sensitivity of 81% was achieved at 2.2 FPs/image. Malignant tumor versus normal tissue classification resulted in a higher Az value of 0.9 under the ROC curve using only the 13 malignant and 13 normal cases with a sensitivity of 85% at 2.45 FPs/image. The mass detection algorithm could detect all the 13 malignant tumors successfully, but achieved a success rate of only 63% (19/30) in detecting the benign masses. The mass regions that were successfully segmented were further classified as benign or malignant disease by computing five texture features based on gray-level co-occurrence matrices (GCMs) and using the features in a logistic regression method. The features were computed using adaptive ribbons of pixels across the boundaries of the masses. Benign versus malignant classification using the GCM-based texture features resulted in Az = 0.79 with 19 benign and 13 malignant cases. 相似文献
The study aims at evaluating the various drought indices for the humid, semi-arid and arid regions of India using conventional indices, such as rainfall anomaly index, departure analysis of rainfall and other indices such as Standard Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) that were analyzed using the DrinC software. In SPI, arid region has seven drought years, whereas humid and semi-arid regions have four. In case of RDI, the humid and semi-arid regions have 11 drought years, whereas arid regions have 10 years. The difference in SPI and RDI was due to the fact that RDI considered potential evapotranspiration, and hence, correlation with plants would be better in case of RDI. Humid region showed a decreasing trend in initial value of RDI during the drought as compared to semiarid and arid regions and indicated possible climate change impact in these regions. Among all the indices, RDI was considered as an effective indicator because of implicit severity and high prediction matches with the actual drought years. SPI and RDI were found to be well correlated with respect to 3 months rainfall data and SPI values led to prediction of annual RDI. The results of our study established that this correlation could be used for developing disaster management plan well in advance to combat the drought consequences.
With continuous depletion of petrochemical feedstock and their rising prices, the chemical industry is now looking for alternative renewable and sustainable materials. Such materials could be processed with various chemistries to produce high performance functional materials for a range of applications, such as plastics, coatings, constructions, pharmaceuticals, and food applications. Cardanol derived from cashew nut shell liquid has a reactive phenolic group and aliphatic double bond that could be exploited to produce novel functional materials for polymer and coating applications. It has previously been used for preparation of phenolics, epoxy, and phenalkamine hardeners. In this study, we report on the preparation of novel epoxy resin from cardanol via simple a two-step reaction. The prepared resin with epoxy equivalent weight of 210–220 gm/eq was analyzed using FTIR and NMR spectroscopy. The epoxy resin was then used as binder along with bisphenol-A-based epoxy resin (DGEBPA) at various weight proportions and cured with different amine hardeners. The cured coatings were analyzed for physical, mechanical, and chemical properties for optimization of the coating formulation. The study conducted showed that 40–60% of DGEBPA resulted in comparable properties to that of completely DGEBPA-based system. Further, thermal and anticorrosive properties of the optimized coatings were also evaluated. 相似文献