首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5325篇
  免费   413篇
  国内免费   5篇
电工技术   66篇
综合类   7篇
化学工业   1637篇
金属工艺   60篇
机械仪表   105篇
建筑科学   211篇
矿业工程   10篇
能源动力   203篇
轻工业   698篇
水利工程   45篇
石油天然气   7篇
无线电   347篇
一般工业技术   1007篇
冶金工业   369篇
原子能技术   29篇
自动化技术   942篇
  2024年   16篇
  2023年   98篇
  2022年   326篇
  2021年   399篇
  2020年   184篇
  2019年   187篇
  2018年   218篇
  2017年   190篇
  2016年   267篇
  2015年   195篇
  2014年   284篇
  2013年   361篇
  2012年   355篇
  2011年   458篇
  2010年   293篇
  2009年   253篇
  2008年   301篇
  2007年   243篇
  2006年   168篇
  2005年   151篇
  2004年   129篇
  2003年   118篇
  2002年   84篇
  2001年   59篇
  2000年   46篇
  1999年   50篇
  1998年   38篇
  1997年   30篇
  1996年   39篇
  1995年   22篇
  1994年   21篇
  1993年   22篇
  1992年   25篇
  1991年   13篇
  1990年   7篇
  1989年   11篇
  1988年   9篇
  1987年   9篇
  1986年   5篇
  1985年   6篇
  1984年   10篇
  1983年   10篇
  1982年   11篇
  1981年   6篇
  1980年   2篇
  1979年   8篇
  1972年   1篇
  1971年   1篇
  1967年   2篇
  1948年   1篇
排序方式: 共有5743条查询结果,搜索用时 15 毫秒
991.
992.
The paper deals with the kinetics of the droplet epitaxial GaAs quantum ring formation grown on AlGaAs (0 0 1) surface. The observation is, that the aspect ratio of these nano structures is depends not only on the technological parameters but on the size of the initial droplet. Under appropriate growth conditions, the depressions, in the middle of the rings are deeper than the surface level of the substrate. A large number of tests show, that the depressions in the middle of the small rings are often deeper than that of the larger ones. The number is larger, than just statistical fluctuation. An explanation for this phenomenon and its kinetics are given in the paper, based on the size dependence of the material properties, like for instance solubility. The plausible explanation assumes is that the probability of the crystal seed formation in the larger droplets is higher.  相似文献   
993.
In diabetes, the mean square error (MSE) metric is extensively used for assessing glucose prediction methods and identifying glucose models. One limitation of this metric is that, by equally treating errors in hypo-, eu-, and hyperglycemia, it is not able to weight the different clinical impact of errors in these three situations. In this paper, we propose a new cost function, which overcomes this limitation and can be used in place of MSE for several scopes, in particular for assessing the quality of glucose predictors and identifying glucose models. The new metric called glucose-specific MSE (gMSE) modifies MSE with a Clark error grid inspired penalty function, which penalizes overestimation in hypoglycemia and underestimation in hyperglycemia, i.e., the most harmful conditions on a clinical perspective. From a mathematical point of view, gMSE retains sensitivity of MSE and inherits some of its important mathematical features, in particular it has no local minima, simplifying the optimization. This makes it suitable for model identification purposes also. First, the goodness of it is demonstrated by means of three experiments, designed ad hoc to evidence its sensitivity to accuracy, precision, and distortion in glucose predictions. Second, a prediction assessment problem is presented, in which two real prediction profiles are compared. Results show that the MSE chooses the worst clinical situation, while gMSE correctly selects the situation with less clinical risk. Finally, we also demonstrate that models identified minimizing gMSE are more accurate in potentially harmful situations (hypo- and hyperglycemia) than those obtained by MSE.  相似文献   
994.
Freestanding silicon nanocrystals (Si‐ncs) offer unique optical and electronic properties for new photovoltaic, thermoelectric, and other electronic devices. A method to fabricate Si‐ncs which is scalable to industrial usage has been developed in recent years. However, barriers to the widespread utilization of these nanocrystals are the presence of charge‐trapping defects and an oxide shell formed upon ambient atmosphere exposure hindering the charge transport. Here, we exploit low‐cost post‐growth treatment routes based on wet‐etching in hydrofluoric acid plus surface hydrosilylation or annealing enabling a complete native oxide removal and a reduction of the defect density by up to two orders of magnitude. Moreover, when compared with only H‐terminated Si‐ncs we report an enhancement of the conductivity by up to a factor of 400 for films of HF etched and annealed Si‐ncs, which retain a defect density below that of untreated Si‐ncs even after several months of air exposure. Further, we demonstrate that HF etched and hydrosilylated Si‐ncs are extremely stable against oxidation and maintain a very low defect density after a long‐term storage in air, opening the possibility of device processing in ambient atmosphere.  相似文献   
995.
The first evidence of out‐of‐plane resonances in hybrid metallo‐dielectric quasi‐crystal (QC) nanostructures composed of metal‐backed aperiodically patterned low‐contrast dielectric layers is reported. Via experimental measurements and full‐wave numerical simulations, these resonant phenomena are characterized with specific reference to the Ammann‐Beenker (quasi‐ periodic, octagonal) tiling lattice geometry and the underlying physics is investigated. In particular, it is shown that, by comparison with standard periodic structures, a moderately richer spectrum of resonant modes may be excited, due to the easier achievement of phase‐matching conditions endowed by its denser Bragg spectrum. Such modes are characterized by a distinctive plasmonic or photonic behavior, discriminated by their field distribution and dependence on the metal film thickness. Moreover, the response is accurately predicted via computationally affordable periodic‐approximant‐based numerical modeling. The enhanced capability of QCs to control number, spectral position, and mode distribution of hybrid resonances may be exploited in a variety of possible applications. To assess this aspect, label‐free biosensing is studied via characterization of the surface sensitivity of the proposed structures with respect to local refractive index changes. Moreover, it is also shown that the resonance‐engineering capabilities of QC nanostructures may be effectively exploited in order to enhance the absorption efficiency of thin‐film solar cells.  相似文献   
996.
The plantaris longus tendon (PLT) in bullfrog develops a fibrocartilage‐like tissue in the area that is functionally subject to compressive forces. The aim of this study was to analyze the modifications of the pressure‐bearing region in bullfrog PLT with different ages (7, 180, and 1,080 days after the end of metamorphosis) using histomorphometric, ultrastructural and biochemical methods. Weak basophilia and cells with a fibroblastic phenotype were observed in the compression region at 7 days of age. On the other hand, a large area of intense tissue basophilia associated with a chondroblast‐like cell population was noted at the other ages. Collagen fibers exhibited a three‐dimensional network‐like arrangement at all ages. The number of connective tissue cells increased between 7 and 180 days of age and was reduced in older animals. The 180‐day‐old animals presented a well‐developed pericellular matrix rich in proteoglycans. The mean diameter of collagen fibrils increased from 7 to 180 days and was the same at 1,080 days. Glycosaminoglycan content was higher in 7‐day‐old animals. A higher amount of hydroxyproline was observed at 180 and 1,080 days. The swelling test showed a significant increase of wet weight in 7‐day‐old animals. In conclusion, the alterations that occur in the pressure‐bearing of bullfrog PLT are the result of physiological alterations of the animal with the maturation and aging. Microsc. Res. Tech. 77:797–805, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
997.
Although several treatments for tendon lesions have been proposed, successful tendon repair remains a great challenge for orthopedics, especially considering the high incidence of re‐rupture of injured tendons. Our aim was to evaluate the pharmacological potential of Aloe vera on the content and arrangement of glycosaminoglycans (GAGs) during tendon healing, which was based on the effectiveness of A. vera on collagen organization previously observed by our group. In rats, a partial calcaneal tendon transection was performed with subsequent topical A. vera application at the injury site. The tendons were treated with A. vera ointment for 7 days and excised on the 7th, 14th, or 21st day post‐surgery. Control rats received ointment without A. vera. A higher content of GAGs and a lower amount of dermatan sulfate were detected in the A. vera‐treated group on the 14th day compared with the control. Also at 14 days post‐surgery, a lower dichroic ratio in toluidine blue stained sections was observed in A. vera‐treated tendons compared with the control. No differences were observed in the chondroitin‐6‐sulfate and TGF‐β1 levels between the groups, and higher amount of non‐collagenous proteins was detected in the A. vera‐treated group on the 21st day, compared with the control group. No differences were observed in the number of fibroblasts, inflammatory cells and blood vessels between the groups. The application of A. vera during tendon healing modified the arrangement of GAGs and increased the content of GAGs and non‐collagenous proteins. Microsc. Res. Tech. 77:964–973, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
998.
To evaluate the intrinsic bioremediation potential in an anoxic tar oil-contaminated aquifer at a former gasworks site, groundwater samples were qualitatively and quantitatively analyzed by compound-specific isotope analysis (CSIA) and signature metabolites analysis (SMA). 13C/12C fractionation data revealed conclusive evidence for in situ biodegradation of benzene, toluene, o-xylene, m/p-xylene, naphthalene, and 1-methylnaphthalene. In laboratory growth studies, 13C/12C isotope enrichment factors for anaerobic degradation of naphthalene (epsilon = -1.1 +/- 0.4) and 2-methylnaphthalene (epsilon = -0.9 +/- 0.1) were determined with the sulfate-reducing enrichment culture N47, which was isolated from the investigated test site. On the basis of these and other laboratory-derived enrichment factors from the literature, in situ biodegradation could be quantified for toluene, o-xylene, m/p-xylene, and naphthalene. Stable carbon isotope fractionation in the field was also observed for ethylbenzene, 2-methylnaphthalene, and benzothiophene but without providing conclusive results. Further evidence for the in situ turnover of individual BTEX compounds was provided by the presence of acetophenone, o-toluic acid, and p-toluic acid, three intermediates in the anaerobic degradation of ethylbenzene, o-xylene, and p-xylene, respectively. A number of groundwater samples also contained naphthyl-2-methylsuccinic acid, a metabolite that is highly specific for the anaerobic degradation of 2-methylnaphthalene. Additional metabolites that provided evidence on the anaerobic in situ degradation of naphthalenes were 1-naphthoic acid, 2-naphthoic acid, 1,2,3,4-tetrahydronaphthoic acid, and 5,6,7,8-tetrahydronaphthoic acid. 2-Carboxybenzothiophene, 5-carboxybenzothiophene, a putative further carboxybenzothiophene isomer, and the reduced derivative dihydrocarboxybenzothiophene indicated the anaerobic conversion of the heterocyclic aromatic hydrocarbon benzothiophene. The combined application of CSIA and SMA, as two reliable and independent tools to collect direct evidence on intrinsic bioremediation, leads to a substantially improved evaluation of natural attenuation in situ.  相似文献   
999.
European hazelnut (Corylus avellana L.) is a major species of interest for nutritional use within the Betulaceae family and its nuts are widely used throughout the world in the chocolate, confectionery, and bakery industries. Recently its cultivation has been expanded in traditional producer countries and established in new places in the southern hemisphere, including Chile, South Africa, and Australia. Introducing hazelnut in new environments could reduce its productivity, lead the trees to experience eco‐physiological disorders, and expose the crop to high pressure from common and new pests and diseases. Thus, new approaches in cultivar choice guidance, in the sustainable orchard management and even in nut storage and kernel quality evaluation are urgently required to improve the hazelnut production and processing chain. The main objective of this study was to systematize the published information regarding recent findings about the cultural operations that directly influence nut and kernel quality, support varietal choice for new plantations, and list the recent advances in nut storage and in quality and safety evaluation. © 2020 Society of Chemical Industry  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号