For large‐scale and high‐throughput production of organic solar cells (OSCs), liquid processing of the functional layers is desired. We demonstrate inverted bulk‐heterojunction organic solar cells (OSCs) with a sol–gel derived V2O5 hole‐extraction‐layer on top of the active organic layer. The V2O5 layers are prepared in ambient air using Vanadium(V)‐oxitriisopropoxide as precursor. Without any post‐annealing or plasma treatment, a high work function of the V2O5 layers is confirmed by both Kelvin probe analysis and ultraviolet photoelectron spectroscopy (UPS). Using UPS and inverse photoelectron spectroscopy (IPES), we show that the electronic structure of the solution processed V2O5 layers is similar to that of thermally evaporated V2O5 layers which have been exposed to ambient air. Optimization of the sol gel process leads to inverted OSCs with solution based V2O5 layers that show power conversion efficiencies similar to that of control devices with V2O5 layers prepared in high‐vacuum. 相似文献
Within a very few years, InAs/GaSb superlattice technology has proven its suitability for high-performance infrared imaging
detector arrays. At the Fraunhofer Institute for Applied Solid State Physics (IAF) and AIM Infrarot-Module GmbH, efforts have
been focused on developing mature fabrication technology for dual-color InAs/GaSb superlattice focal-plane arrays for simultaneous,
colocated detection at 3 μm to 4 μm and 4 μm to 5 μm in the mid-wavelength infrared atmospheric transmission window. Integrated into a wide-field-of-view missile approach warning
system for an airborne platform, a very low number of pixel outages and cluster defects is mandatory for bispectral detector
arrays. Process refinements, intense root-cause analysis, and specific test methodologies employed at various stages during
the process have proven to be the key for yield enhancements. 相似文献
We introduce SImulation Verification with Augmentation (SIVA), a tool for coverage-directed state space search on digital hardware designs. SIVA tightly integrates simulation with symbolic techniques for efficient state space search. Specifically, the core algorithm uses a combination of ATPG and BDDs to generate directed input vectors, i.e., inputs which cover behavior not excited by simulation. We also present approaches to automatically generate lighthouses that guide the search towards hard-to-reach coverage goals. Experiments demonstrate that our approach is capable of achieving significantly greater coverage than either simulation or symbolic techniques in isolation. 相似文献
Two types of short distance optical interconnects for on-board applications are presented: Small diameter plastic optical fibre (POF) links and multimode polymer waveguide layers integrated in multilayer printed circuit boards (PCB). POF links with fibre numbers up to 128 and link lengths up to 50 cm are realized with total transmission loss values below 2 dB at 660 nm. First tests of 10 cm long temperature stable multimode polymer waveguides laminated into standard multilayer PCBs demonstrate the capabilities of combined electrical-optical circuit boards. 相似文献
Using a representative model system, here electronic and structural properties of aromatic self‐assembled monolayers (SAMs) are described that contain an embedded, dipolar group. As polar unit, pyrimidine is used, with its orientation in the molecular backbone and, consequently, the direction of the embedded dipole moment being varied. The electronic and structural properties of these embedded‐dipole SAMs are thoroughly analyzed using a number of complementary characterization techniques combined with quantum‐mechanical modeling. It is shown that such mid‐chain‐substituted monolayers are highly interesting from both fundamental and application viewpoints, as the dipolar groups are found to induce a potential discontinuity inside the monolayer, electrostatically shifting the core‐level energies in the regions above and below the dipoles relative to one another. These SAMs also allow for tuning the substrate work function in a controlled manner independent of the docking chemistry and, most importantly, without modifying the SAM‐ambient interface. 相似文献
Improvement of the interface contact between biological objects and electronic devices can significantly enhance the quality of electronic signal transfer. The surface of biosensor can be artificially modified in order to strengthen the adhesion of biological cells. We report on results of fabrication of micron and submicron golden spines by means of e-beam lithography and electroplating. The fabrication technique allows easy modification of the size and shape of golden spines by variation of processing parameters. The structures with different spine profiles and spacing have been fabricated for optimization of cell growth conditions. We present the results of growth of rat cortical neurons on the surface of spine modified samples. Well-defined cell guidance was established at the spine arrays. Furthermore, the results of transmission electron microscope and focused ion beam technique confirm the good adhesion between the spines and cell structures. 相似文献
We introduce a novel algorithm for online estimation of Acoustic Impulse Responses (AIRs) which allows for fast convergence by exploiting prior knowledge about the fundamental structure of AIRs. The proposed method assumes that the variability of AIRs of an acoustic scene is confined to a low-dimensional manifold which is embedded in a high-dimensional space of possible AIR estimates. We discuss various approaches which exploit a training data set of AIRs, e.g., high-accuracy AIR estimates from the acoustic scene, to learn a local affine subspace approximation of the AIR manifold. The model is motivated by the idea of describing the generally nonlinear AIR manifold locally by tangential hyperplanes and its validity is verified for simulated data. Subsequently, we describe how the manifold assumption can be used to enhance online AIR estimates by projecting them onto an adaptively estimated subspace. Motivated by the assumption of manifolds being locally Euclidean, the parameters determining the adaptive subspace are learned from the nearest neighbor AIR training samples to the current AIR estimate. To assess the proximity of training data AIRs to the current AIR estimate, we introduce a probabilistic extension of the Euclidean distance which improves the performance for applications with non-white excitation signals. Furthermore, we describe how model imperfections can be tackled by a soft projection of the AIR estimates. The proposed algorithm exhibits significantly faster convergence properties in comparison to a high-performance state-of-the-art algorithm. Furthermore, we show an improved steady-state performance for speech-excited system identification scenarios suffering from high-level interfering noise and nonunique solutions.