首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11414篇
  免费   87篇
  国内免费   149篇
电工技术   141篇
综合类   5篇
化学工业   511篇
金属工艺   461篇
机械仪表   74篇
建筑科学   115篇
矿业工程   8篇
能源动力   69篇
轻工业   125篇
水利工程   35篇
石油天然气   20篇
武器工业   2篇
无线电   416篇
一般工业技术   313篇
冶金工业   271篇
原子能技术   94篇
自动化技术   8990篇
  2024年   2篇
  2023年   18篇
  2022年   36篇
  2021年   69篇
  2020年   52篇
  2019年   53篇
  2018年   75篇
  2017年   68篇
  2016年   73篇
  2015年   52篇
  2014年   273篇
  2013年   273篇
  2012年   839篇
  2011年   3155篇
  2010年   1192篇
  2009年   1058篇
  2008年   723篇
  2007年   631篇
  2006年   481篇
  2005年   613篇
  2004年   553篇
  2003年   605篇
  2002年   290篇
  2001年   16篇
  2000年   16篇
  1999年   40篇
  1998年   95篇
  1997年   41篇
  1996年   23篇
  1995年   14篇
  1994年   13篇
  1993年   10篇
  1992年   13篇
  1991年   10篇
  1990年   13篇
  1989年   12篇
  1988年   11篇
  1987年   10篇
  1986年   22篇
  1985年   15篇
  1984年   29篇
  1983年   16篇
  1982年   16篇
  1981年   10篇
  1980年   2篇
  1979年   4篇
  1976年   4篇
  1972年   4篇
  1963年   1篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
32.
A superhydrophobic micromesh covered with nanoprotrusions has been introduced and its applicability to a waterproof mobile phone speaker has been evaluated. The nanotextured superhydrophobic micromesh showed excellent water repellency, self-cleaning and waterproofing performances. In a waterproof speaker test using the fabricated nanotextured micromesh, the micromesh did not lose its waterproof function at 2 m water depth and did not form a remnant water film after being removed from the water. The packaged speaker showed almost the same sound quality before and after dipping at a 2 m water depth. These results demonstrate that the superhydrophobic nanotextured micromesh could be directly applicable for various products that need to resist water penetration, yet allow the transmission of gases and sound/light waves.  相似文献   
33.
In this paper, we study the effect of time delay on the spiking activity in Newman-Watts small-world networks of Hodgkin-Huxley neurons with non-Gaussian noise, and investigate how the non-Gaussian noise affects the delay-induced behaviors. It was found that, as the delay increases, the neuron spiking intermittently performs the most ordered and synchronized behavior when the delay lengths are integer multiples of the spiking periods, which shows multiple temporal resonances and spatial synchronizations, and reveals that the locking between the delay lengths and the spiking periods might be the mechanism behind the behaviors. It was also found that the delay-optimized spiking behaviors could be enhanced when non-Gaussian noise's deviation from the Gaussian noise is appropriate. These results show that time delay and non-Gaussian noise would cooperate to play more constructive and efficient roles in the information processing of neural networks.  相似文献   
34.
This paper addresses the problems of stability and synchronization for a class of Markovian jump neural networks with partly unknown transition probabilities. We first study the stability analysis problem for a single neural network and present a sufficient condition guaranteeing the mean square asymptotic stability. Then based on the Lyapunov functional method and the Kronecker product technique, the chaos synchronization problem of an array of coupled networks is considered. Both the stability and the synchronization conditions are delay-dependent, which are expressed in terms of linear matrix inequalities. The effectiveness of the developed methods is shown by simulation examples.  相似文献   
35.
In this paper, a robust parametric cerebellar model articulation controller (RP-CMAC) with self-generating design, called RPCSGD, is proposed for uncertain nonlinear systems. The proposed controller consists of two parts: one is the parametric CMAC with self-generating design (PCSGD), which is utilized to approximate the ideal controller and the other is the robust controller, which is designed to achieve a specified H robust tracking performance of the system. The corresponding memory size of the proposed controller can be suitably constructed via the self-generating design. Thus, the useless or untrained memories will not take possession of the space. Besides, the concept of sliding-mode control (SMC) is adopted so that the proposed controller has more robustness against the approximated error and uncertainties. The stability of the system can be guaranteed surely due to the derivations of the adaptive laws of the proposed RPCSGD based on the Lyapunov function. Finally, the proposed controller is applied to the second-order chaotic system and the one-link rigid robotic manipulator. The tracking performance and effectiveness of the proposed controller are verified by simulations of the computer.  相似文献   
36.
A new incrementally growing neural network model, called the growing fuzzy topology ART (GFTART) model, is proposed based on integrating the conventional fuzzy ART model with the incremental topology-preserving mechanism of the growing cell structure (GCS) model. This is in addition, to a new training algorithm, called the push-pull learning algorithm. The proposed GFTART model has two purposes: First, to reduce the proliferation of incrementally generated nodes in the F2 layer by the conventional fuzzy ART model based on replacing each F2 node with a GCS. Second, to enhance the class-dependent clustering representation ability of the GCS model by including the categorization property of the conventional fuzzy ART model. In addition, the proposed push-pull training algorithm enhances the cluster discriminating property and partially improves the forgetting problem of the training algorithm in the GCS model.  相似文献   
37.
This study reports a microfluidic cell culture chip encompassing 36 microbioreactors for high throughput perfusion 3-dimensional (3D) cell culture-based chemosensitivity assays. Its advantages include the capability for multiplexed medium delivery, and the function for both efficient and high throughput micro-scale 3D culture construct preparation and loading. The results showed that the proposed medium pumping mechanism was able to provide a uniform pumping rates ranging from 1.2 to 3.9 μl h−1. In addition, the simple cell/hydrogel loading scheme has been proven to be able to carry out 3D cell culture construct preparation and loading precisely and efficiently. Furthermore, a chemosensitivity assay was successfully demonstrated using the proposed cell culture chip. The results obtained were also compared with the same evaluation based on a conventional 2D monolayer cell culture. It can be concluded that the choice of cell culture format can result in different chemosensitivity evaluation results. Overall, because of the nature of miniaturized perfusion 3D cell culture, the cell culture chip not only can provide stable, well-defined and more biologically relevant culture environments, but it also features low consumption of research resources. All these traits are found particularly useful for high-precision and high-throughput 3D cell culture-based assays.  相似文献   
38.
This paper presents the use of mesoporous silica skeletons as substrates for electroosmotic (EO) micropumps. Mesoporous silica skeletons have bimodal pore size distributions consisting of macropores and cation-permselective mesopores. These materials have the potential for high flow rate per power because the cation-permselective mesopores can generate an induced charge layer (ICL) and electroosmosis of the second kind (EO-2) under high applied electric fields. The diffuse charge layers induced by the electric field result in an EO-2 flow rate that increases quadratically with increasing electric field. In contrast, the flow rate of the more common electroosmosis of the first kind (EO-1) is linearly proportional to electric field. Here, we investigate the impact of finite pressure loads on the EO-2 flow rate with experiments and an engineering model to evaluate the potential of mesoporous skeletons for micropumping applications. Our results include analyses of maximum flow rate, maximum pressure, and flow rate with intermediate pressure loads. The results indicate the existence of a critical pressure load at which reverse pressure-driven flow significantly diminishes the EO-2 flow. We also investigate the scaling of flow rate per power with respect to substrate thickness and area, demonstrating significant increases in flow rate per power with thinner substrates and favorable scaling for miniaturization of EO-2 pumps.  相似文献   
39.
Freshly prepared pea thylakoid membranes were immobilized in bovine serum albumin-glutaraldehyde cross-linked matrix (BSA-GA matrix) and their stability under long term storage was analyzed by Pulse-Amplitude-Modulated (PAM) chlorophyll fluorescence and photosynthetic oxygen evolution measured by oxygen rate electrode. The thylakoid membranes stored at 4 °C showed prolonged stability in BSA-GA matrix and additional adsorption on nitrocellulose membrane filters gave them more stability. The sensitivity of the parameters of the oxygen evolution of thylakoid membranes to atrazine increased with immobilization. The half-inhibition time for oxygen evolution and quantum efficiency of photosynthesis could be prolonged to more than 15 days. These results suggest that the immobilized thylakoid membranes in BSA-GA matrix can be used as biological receptor in biosensors for a long period of time (up to 25 days) applying the proposed new method for atrazine detection by using polarographic oxygen rate electrode. This method is more sensitive, faster and easier to use than other methods for detection of herbicides based on determination of the photochemical activity of photosystem II.  相似文献   
40.
Evanescent wave sensor based on permanently bent single mode optical fiber   总被引:1,自引:0,他引:1  
A novel refractive index sensing scheme based on evanescent wave interaction through locally and permanently bent single mode optical fibers is proposed. Local and permanent bends in single mode optical fibers enable significant power coupling between core and cladding modes. Order and number of excited cladding modes depend on bend features and determine the field profile at the output of the bent region. This in turn constitutes a simple mechanism to tailor the field distribution in single mode optical fibers useful for spatial light modulation. Moreover, since guided cladding modes are strongly influenced by the surrounding refractive index (SRI), the power transmitted at the output of the bent region as well as its dependence on the optical wavelength are strongly sensitive to the SRI opening new scenarios in sensing applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号