首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2054篇
  免费   116篇
  国内免费   23篇
电工技术   29篇
综合类   7篇
化学工业   444篇
金属工艺   47篇
机械仪表   70篇
建筑科学   62篇
矿业工程   1篇
能源动力   202篇
轻工业   170篇
水利工程   5篇
石油天然气   11篇
武器工业   1篇
无线电   195篇
一般工业技术   498篇
冶金工业   138篇
原子能技术   31篇
自动化技术   282篇
  2024年   7篇
  2023年   38篇
  2022年   117篇
  2021年   163篇
  2020年   100篇
  2019年   105篇
  2018年   129篇
  2017年   106篇
  2016年   123篇
  2015年   67篇
  2014年   94篇
  2013年   152篇
  2012年   99篇
  2011年   129篇
  2010年   94篇
  2009年   102篇
  2008年   65篇
  2007年   77篇
  2006年   53篇
  2005年   49篇
  2004年   30篇
  2003年   29篇
  2002年   14篇
  2001年   13篇
  2000年   21篇
  1999年   24篇
  1998年   31篇
  1997年   19篇
  1996年   16篇
  1995年   11篇
  1994年   13篇
  1993年   10篇
  1992年   8篇
  1991年   8篇
  1990年   7篇
  1989年   8篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   8篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   5篇
  1978年   8篇
  1977年   3篇
  1976年   3篇
  1966年   1篇
排序方式: 共有2193条查询结果,搜索用时 15 毫秒
61.
M. Iqbal 《Solar Energy》1979,23(2):169-173
Empirical equations have been developed which correlate the monthly average daily horizontal diffuse and beam radiation with the fraction of maximum possible number of bright sunshine hours. These correlations are based on measured data from three widely spread Canadian stations.Depending upon whether or not the total horizontal radiation is known, the two correlations for the diffuse radiation are: .The correlation for beam radiation is: .  相似文献   
62.
63.
In this paper an approach for the dynamic modelling of polymer electrolyte membrane fuel cells is presented. A mathematical formulation based on empirical equations is discussed and several features, exhibiting dynamic phenomena, are investigated. A generalized steady state fuel cell model is extended for the development of a method for dynamic electrochemical analysis. Energy balance and reactant flow dynamics are also explained through physical and empirical relationships. A well‐researched system (Ballard MK5‐E stack based PGS‐105B system) is considered in order to understand the operation of a practical fuel cell unit. Matlab‐SIMULINKTM has been used in simulating the models. The proposed method appears to be relatively simple and consequently requires less computation time. Simulation results are compared with available experimental findings and a good match has been observed.  相似文献   
64.
The composition and specific features of the dissolution of iron manganese concretions from the Baltic Sea are investigated using an echelle spectrometer and atomic absorption spectrometry. The concretion samples used in the analysis are treated in diluted solutions of hydrochloric and nitric acids with additives of hydrogen peroxide. The as-analyzed ratio Mn : Fe in the samples studied is equal to 1.7, which is an important characteristic of the ratio of d elements involved in concretions from the Baltic Sea. The results of the investigations performed can be used to develop more efficient methods for selective extraction of manganese from similar concretions and to determine the isotope content in noble gases of ancient artifact origin that survive in concretions of the World Ocean.  相似文献   
65.
Leaves of Chrysanthemum morifolium cv. Ramat were extracted sequentially with hexane, ethyl acetate, and methanol. The methanol fraction, when incorporated into artificial diet was found to reduce the growth of cabbage looper (Trichoplusia ni Hubner) larvae at concentrations between 500 and 5000 ppm of diet. Fractionation of the methanol extract on a Sephadex column yielded five fractions, three of which reduced the weight of larvae relative to the control. One fraction was analyzed using high performance liquid chromatography (HPLC) and found to contain three main constituents. These compounds were purified using a combination of gel permeation chromatography on Sephadex LH20 and HPLC, and analyzed by 1H and 13CNMR as well as undergoing chemical and physical analyses. The compounds were identified as: 1, chlorogenic acid (5-O-caffeoylquinic acid); 2, 3,5-O-dicaffeoylquinic acid; and 3, 3', 4',5-trihydroxyflavanone7-O-glucuronide (eriodictyol7-O-glucuronide). At concentrations between 100 to 1000 ppm these compounds reduced both growth and photosynthesis of Lemna gibba L. with the order of efficacy being: flavanone > chlorogenic acid > 3,5-O-dicaffeoylquinic acid. Furthermore, when incorporated separately into artificial diet these compounds, at 10 to 1000 ppm, enhanced or reduced growth of the cabbage looper (Trichoplusia ni) and gypsy moth (Lymantria dispar L.).  相似文献   
66.
Ionic liquids (ILs) have gained wide‐spread focus owing to its negligible vapor pressure, low heat capacity, high thermal stability, and structural diversity. The solubility and selectivity toward carbon dioxide has made ILs a unique platform that possess the potential in gas separations. In particularly, combining functional ILs with membranes and porous supports is an efficient way to design task‐specific materials for CO2 separations. This minireview summarizes the developments and advances of ionic liquids‐based membranes for CO2 separations in recent three years, with an emphasis on the strategy of incorporating ionic liquids and CO2 separation performance.  相似文献   
67.
Hydrodesulfurization (HDS) of crude oil has not been reported widely in the literature and it is one of the most challenging tasks in the petroleum refining industry. In order to obtain useful models for HDS process that can be confidently applied to reactor design, operation and control, the accurate estimation of kinetic parameters of the relevant reaction scheme are required. In this work, an optimization technique is used in order to obtain the best values of kinetic parameters in trickle-bed reactor (TBR) process used for hydrodesulfurization (HDS) of crude oil based on pilot plant experiment. The optimization technique is based on minimization of the sum of the square errors (SSE) between the experimental and predicted concentrations of sulfur compound in the products using two approaches (linear (LN) and non-linear (NLN) regressions).A set of experiments were carried out in a continuous flow isothermal trickle-bed reactor using crude oil as a feedstock and the commercial cobalt–molybdenum on alumina (Co–Mo/γ-Al2O3) as a catalyst. The reactor temperature was varied from 335 to 400 °C, the hydrogen pressure from 4 to 10 MPa and the liquid hourly space velocity (LHSV) from 0.5 to 1.5 h−1, keeping constant hydrogen to oil ratio (H2/oil) at 250 L/L.A steady-state heterogeneous model is developed based on two-film theory, which includes mass transfer phenomena in addition to many correlations for estimating physiochemical properties of the compounds. The hydrodesulfurization reaction is described by Langmuir–Hinshelwood kinetics. gPROMS software is employed for modelling, parameter estimation and simulation of hydrodesulfurization of crude oil in this work. The model simulations results were found to agree well with the experiments carried out in a wide range of the studied operating conditions. Following the parameter estimation, the model is used to predict the concentration profiles of hydrogen, hydrogen sulfide and sulfur along the catalyst bed length in gas, liquid and solid phase, which provides further insight of the process.  相似文献   
68.
A novel linear low‐density polyethylene (LLDPE)/polypropylene (PP) thermostimulative shape memory blends were prepared by melt blending with moderate crosslinked LLDPE/PP blend (LLDPE–PP) as compatibilizer. In this shape memory polymer (SMP) blends, dispersed PP acted as fixed phase whereas continuous LLDPE phase acted as reversible or switch phase. LLDPE–PP improved the compatibility of LLDPE/PP blends as shown in scanning electron microscopic photos. Dynamic mechanical analysis test showed that the melt strengths of the blends were enhanced with increasing LLDPE–PP content. A shape memory mechanism for this type of SMP system was then concluded. It was found that when the blend ratio of LLDPE/PP/LLDPE–PP was 87/13/6, the blend exhibited the best shape memory effect at stretch ratio of 80%, stretch rate of 25 mm/min, and recovery temperature of 135°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   
69.
Fe2-xAgxO3 (0?≤?x?≤?0.04) nanopowders with various Ag contents were synthesized at different hydrothermal reaction temperatures (150?°C and 180?°C). Their structural properties were fully investigated through an X-ray diffraction, a Fourier transform infrared spectroscopy, and an X-ray photoelectron spectroscopy. The hydrothermal reaction temperature, time, and Ag content remarkably affected the morphological characteristics and crystal structure of the synthesized powders. The Fe2-xAgxO3 (0?≤?x?≤?0.04) powders synthesized at 150?°C for 6?h and the Fe2-xAgxO3 (0.02?≤?x?≤?0.04) powders synthesized at 180?°C for 12?h formed the orthorhombic α-FeOOH phase with a rod-like morphology, whereas the Fe2-xAgxO3 (0?≤?x?≤?0.01) powders synthesized at 180?°C for 12?h formed the rhombohedral α-Fe2O3 phase with a spherical-like morphology. The Fe1.98Ag0.02O3 fabricated by utilizing Fe1.98Ag0.02O3 powders synthesized at 180?°C showed the largest power factor (0.64?×10?5 Wm?1 K?2) and dimensionless figure-of-merit (0.0036) at 800?°C.  相似文献   
70.
ZnO–SnO2 nanocubes were used as promising material for efficient sensing of p-nitrophenol and faster photocatalytic degradations of dyes like methyl orange (MO), methylene Blue (MB) and acid orange 74 (AO74). ZnO–SnO2 nanocubes were prepared by the facile solution process at 50 °C using Zn(NO3)2·6H2O and SnCl2·2H2O as a precursor in the presence of ethylenediammine. The synthesized material was examined for its morphological, structural, crystalline, optical, vibrational, and compositional studies by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy. FESEM studies revealed the formation of well-defined ZnO–SnO2 nanocubes where the structural examinations revealed the formation of a crystalline tetragonal rutile phase for SnO2 with some crystal sites doped with Zn. The as-synthesized nanocubes were explored for their photocatalytic activities towards three different dye viz. MO, MB, and AO74. Practically, complete degradation of AO74 was seen within 4 minutes of photo-irradiation in the presence of 0.05 g ZnO–SnO2 nanocubes. However, 97.17% and 41.63% degradations were observed for MB and MO within 15 and 60 minutes, respectively. All the dye degradation processes followed the pseudo-first-order kinetic model. Moreover, the as-synthesized nanocubes were utilized to fabricate highly sensitive and selective fluorescent chemical sensor for the detection of p-nitrophenol (PNP). ZnO–SnO2 nanocubes showed a very low detection limit of 4.09 μM for the detection of PNP as calculated according to the 3σ IUPAC criteria. Further, the as-synthesized ZnO–SnO2 nanotubes were found to be highly selective for p-nitrophenol as compared to the other two isomers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号