首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6833篇
  免费   453篇
  国内免费   178篇
电工技术   130篇
综合类   111篇
化学工业   1760篇
金属工艺   174篇
机械仪表   290篇
建筑科学   238篇
矿业工程   23篇
能源动力   398篇
轻工业   665篇
水利工程   99篇
石油天然气   214篇
武器工业   7篇
无线电   691篇
一般工业技术   1167篇
冶金工业   313篇
原子能技术   92篇
自动化技术   1092篇
  2024年   28篇
  2023年   122篇
  2022年   332篇
  2021年   463篇
  2020年   346篇
  2019年   365篇
  2018年   388篇
  2017年   333篇
  2016年   365篇
  2015年   249篇
  2014年   381篇
  2013年   604篇
  2012年   387篇
  2011年   403篇
  2010年   331篇
  2009年   314篇
  2008年   229篇
  2007年   212篇
  2006年   193篇
  2005年   144篇
  2004年   113篇
  2003年   96篇
  2002年   82篇
  2001年   64篇
  2000年   72篇
  1999年   63篇
  1998年   80篇
  1997年   72篇
  1996年   57篇
  1995年   61篇
  1994年   39篇
  1993年   40篇
  1992年   44篇
  1991年   36篇
  1990年   31篇
  1989年   34篇
  1988年   18篇
  1987年   33篇
  1986年   31篇
  1985年   23篇
  1984年   31篇
  1983年   26篇
  1982年   17篇
  1981年   9篇
  1980年   14篇
  1979年   13篇
  1978年   12篇
  1977年   11篇
  1976年   14篇
  1975年   8篇
排序方式: 共有7464条查询结果,搜索用时 15 毫秒
71.
The productivity of agricultural produce is fairly dependent on the availability of nutrients and efficient use. Magnesium (Mg2+) is an essential macronutrient of living cells and is the second most prevalent free divalent cation in plants. Mg2+ plays a role in several physiological processes that support plant growth and development. However, it has been largely forgotten in fertilization management strategies to increase crop production, which leads to severe reductions in plant growth and yield. In this review, we discuss how the Mg2+ shortage induces several responses in plants at different levels: morphological, physiological, biochemical and molecular. Additionally, the Mg2+ uptake and transport mechanisms in different cellular organelles and the role of Mg2+ transporters in regulating Mg2+ homeostasis are also discussed. Overall, in this review, we critically summarize the available information about the responses of Mg deficiency on plant growth and development, which would facilitate plant scientists to create Mg2+-deficiency-resilient crops through agronomic and genetic biofortification.  相似文献   
72.
过渡金属Fe2+是最经济有效且环境友好的PS活化物质,但是Fe2+易于被氧化而失去活化能力导致Fe2+/PS体系持续效果较差。为了提高Fe2+活化PS氧化降解有机污染物的效率,本论文将医学上常用的碘化X射线显影剂(ICM)的典型代表碘海醇(Iohexol)作为目标污染物,研究其在UV/PS、Fe(C2O4)33-/PS、UV/Fe(C2O4)33-/PS和Fe2+/PS 4种高级氧化体系中的降解,考查Fe(C2O4 )33-浓度、紫外光强和pH对UV/Fe(C2O4)33-/PS体系中碘海醇降解和PS活化分解的影响,并且分析体系中Fe2+浓度变化及其转化率。结果表明:4种高级氧化体系中碘海醇的氧化分解率分别为:83.8%、7.0%、98.8%、69.9%,其中,UV/Fe(C2O4 )33-/PS体系能够通过紫外光促进铁离子还原,溶液中对PS起活化作用的Fe2+逐渐释出,对碘海醇的降解最为高效彻底。随着Fe(C2O4 )33-浓度的增加,UV/Fe(C2O4 )33-/PS体系中PS的分解率不断增加,而碘海醇的降解率却先增加后减少。4种不同初始Fe(C2O4 )33-浓度下(20 μM、50 μM、100 μM、200 μM),碘海醇降解速率依次为:100 μM > 200 μM > 50 μM > 20 μM。在UV/Fe(C2O4 )33-/PS体系中,Fe2+浓度均是先快速增加后缓慢下降,碘海醇的降解率、PS的分解率以及Fe2+的最高转化率均与光强正相关,与pH负相关。因此,利用紫外光还原铁离子能够极大的提高提高Fe2+活化PS效率,且体系对于光强、pH等影响因素有较强的适应能力,在水处理高级氧化领域的具有较大的应用前景。  相似文献   
73.
The development of an inorganic electrochemical stable solid-state electrolyte is essentially responsible for future state-of-the-art all-solid-state lithium batteries (ASSLBs). Because of their advantages in safety, working temperature, high energy density, and packaging, ASSLBs can develop an ideal energy storage system for modern electric vehicles (EVs). A solid electrolyte (SE) model must have an economical synthesis approach, exhibit electrochemical and chemical stability, high ionic conductivity, and low interfacial resistance. Owing to its highest conductivity of 17 mS·cm-1, and deformability, the sulfide-based Li7P3S11 solid electrolyte is a promising contender for the high-performance bulk type of ASSLBs. Herein, we present a current glimpse of the progress of synthetic procedures, structural aspects, and ionic conductivity improvement strategies. Structural elucidation and mechanistic approaches have been extensively discussed by using various characterization techniques. The chemical stability of Li7P3S11 could be enhanced via oxide doping, and hard and soft acid/base (HSAB) concepts are also discussed. The issues to be undertaken for designing the ideal solid electrolytes, interfacial challenges, and high energy density have been discoursed. This review aims to provide a bird's eye view of the recent development of Li7P3S11-based solid-state electrolyte applications and explore the strategies for designing new solid electrolytes with a target-oriented approach to enhance the efficiency of high energy density all-solid-state lithium batteries.  相似文献   
74.
75.
Toll-like receptor (TLR) signaling plays a critical role in the induction and progression of autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematous, experimental autoimmune encephalitis, type 1 diabetes mellitus and neurodegenerative diseases. Deciphering antigen recognition by antibodies provides insights and defines the mechanism of action into the progression of immune responses. Multiple strategies, including phage display and hybridoma technologies, have been used to enhance the affinity of antibodies for their respective epitopes. Here, we investigate the TLR4 antibody-binding epitope by computational-driven approach. We demonstrate that three important residues, i.e., Y328, N329, and K349 of TLR4 antibody binding epitope identified upon in silico mutagenesis, affect not only the interaction and binding affinity of antibody but also influence the structural integrity of TLR4. Furthermore, we predict a novel epitope at the TLR4-MD2 interface which can be targeted and explored for therapeutic antibodies and small molecules. This technique provides an in-depth insight into antibody–antigen interactions at the resolution and will be beneficial for the development of new monoclonal antibodies. Computational techniques, if coupled with experimental methods, will shorten the duration of rational design and development of antibody therapeutics.  相似文献   
76.
Breast cancer (BC) is a leading cause of cancer deaths in women in less developed countries and the second leading cause of cancer death in women in the U.S. In this study, we report the inhibition of E2-mediated mammary tumorigenesis by Cuminum cyminum (cumin) administered via the diet as cumin powder, as well as dried ethanolic extract. Groups of female ACI rats were given either an AIN-93M diet or a diet supplemented with cumin powder (5% and 7.5%, w/w) or dried ethanolic cumin extract (1%, w/w), and then challenged with subcutaneous E2 silastic implants (1.2 cm; 9 mg). The first appearance of a palpable mammary tumor was significantly delayed by both the cumin powder and extract. At the end of the study, the tumor incidence was 96% in the control group, whereas only 55% and 45% animals had palpable tumors in the cumin powder and extract groups, respectively. Significant reductions in tumor volume (660 ± 122 vs. 138 ± 49 and 75 ± 46 mm3) and tumor multiplicity (4.21 ± 0.43 vs. 1.16 ± 0.26 and 0.9 ± 0.29 tumors/animal) were also observed by the cumin powder and cumin extract groups, respectively. The cumin powder diet intervention dose- and time-dependently offset E2-related pituitary growth, and reduced the levels of circulating prolactin and the levels of PCNA in the mammary tissues. Mechanistically, the cumin powder diet resulted in a significant reversal of E2-associated modulation in ERα, CYP1A1 and CYP1B1. Further, the cumin powder diet reversed the expression levels of miRNAs (miR-182, miR-375, miR-127 and miR-206) that were highly modulated by E2 treatment. We analyzed the composition of the extract by GC/MS and established cymene and cuminaldehyde as major components, and further detected no signs of gross or systemic toxicity. Thus, cumin bioactives can significantly delay and prevent E2-mediated mammary tumorigenesis in a safe and effective manner, and warrant continued efforts to develop these clinically translatable spice bioactives as chemopreventives and therapeutics against BC.  相似文献   
77.
It remains a challenge to maintain the antiadhesion properties of superhydrophobic films after exposure to bacterial environments. In this work, superhydrophobic bactericidal polymer films via the simple incorporation of polyvinylpyrrolidone-iodine (PVP-I) or iodine into polytetrafluoroethylene (PTFE) are fabricated to improve their antiadhesive and antibacterial capability. Superhydrophobic iodine-embedded films, polytetrafluoroethylene/polyvinylpyrrolidone-iodine and polytetrafluoroethylene-iodine (PTFE/PVP-I and PTFE-I), show excellent antiadhesive and bactericidal performances even post exposure to bacterial solutions as compared to iodine-free counterparts by controlling the release of iodine. Especially, superhydrophobic PTFE/PVP-I films display a more sustained iodine release profile and significant antibacterial properties against gram-positive (S. aureus, methicillin-resistant S. aureus (MRSA)) and gram-negative (E. coli) bacteria. Such a facile combination of antiseptic agents and superhydrophobic surface could be widely used for antiseptic biomedical applications.  相似文献   
78.
Microglial activity in the aging neuroimmune system is a central player in aging-related dysfunction. Aging alters microglial function via shifts in protein signaling cascades. These shifts can propagate neurodegenerative pathology. Therapeutics require a multifaceted approach to understand and address the stochastic nature of this process. Polyphenols offer one such means of rectifying age-related decline. Our group used mass spectrometry (MS) analysis to explicate the complex nature of these aging microglial pathways. In our first experiment, we compared primary microglia isolated from young and aged rats and identified 197 significantly differentially expressed proteins between these groups. Then, we performed bioinformatic analysis to explore differences in canonical signaling cascades related to microglial homeostasis and function with age. In a second experiment, we investigated changes to these pathways in aged animals after 30-day dietary supplementation with NT-020, which is a blend of polyphenols. We identified 144 differentially expressed proteins between the NT-020 group and the control diet group via MS analysis. Bioinformatic analysis predicted an NT-020 driven reversal in the upregulation of age-related canonical pathways that control inflammation, cellular metabolism, and proteostasis. Our results highlight salient aspects of microglial aging at the level of protein interactions and demonstrate a potential role of polyphenols as therapeutics for age-associated dysfunction.  相似文献   
79.
Cellulose nanocrystals (CNCs) incorporated with silver nanoparticles (AgNPs) photonic films have drawn considerable attention due to their plasmonic chiroptical activity. However, the exploitation of some fundamental properties for practical use such as the affinity analysis of metal nanoparticles attached to the surface of photonic films according to the solvent compatibility and antibacterial activity under physical conditions has yet not been studied. Hence, a facile process of in situ deposition of AgNPs into the chiral structure of CNC films is proposed. CNC photonic films, cross-linked by glutaraldehyde are prepared. This interaction generated the solvents-stable photonic film with a considerable amount of unreacted aldehyde functional groups that facilitates the reduction of Ag salt to AgNPs. The formed AgNPs in the photonic films show excellent stability over immersion in various polar and non-polar solvents. The post-solvent treated photonic films display excellent contact-based antibacterial behavior against gram-negative Escherichia coli.  相似文献   
80.
刘冕  张文娟  胡石林 《当代化工》2021,50(4):836-839
旨在有效去除氦气中存在的甲烷和氮气杂质组分,通过对活性炭77 K下N2吸附脱附等温线测试,比较不同活性炭的结构性能,选择性能较优的活性炭AC-1吸附材料,测试了吸附剂在不同温度下对甲烷和氮气的吸附性能.采用氢氧化钠溶液对活性炭AC-1进行了表面改性,研究了改性活性炭对甲烷和氮气的吸附性能.结果表明:不同温度时活性炭AC-1的吸附量有明显的差异;活性炭AC-1经改性后,其比表面积和孔容均有所增大,孔径分布得到优化,对甲烷与氮气的吸附量明显提高.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号