首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   12篇
  国内免费   3篇
电工技术   2篇
化学工业   75篇
金属工艺   5篇
机械仪表   11篇
建筑科学   10篇
能源动力   12篇
轻工业   34篇
水利工程   1篇
石油天然气   1篇
无线电   39篇
一般工业技术   84篇
冶金工业   12篇
原子能技术   5篇
自动化技术   64篇
  2024年   1篇
  2023年   11篇
  2022年   18篇
  2021年   37篇
  2020年   21篇
  2019年   38篇
  2018年   32篇
  2017年   14篇
  2016年   11篇
  2015年   7篇
  2014年   13篇
  2013年   34篇
  2012年   14篇
  2011年   15篇
  2010年   7篇
  2009年   3篇
  2008年   6篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   8篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1993年   1篇
  1992年   7篇
  1991年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有355条查询结果,搜索用时 15 毫秒
91.
The future needs of space-based, observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high-radiation and low-temperature environments. Here, we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 μm and report good agreement between the modeled and measured response. We present a technique of using standard micromachining processes for semiconductor fabrication to make compact, free-standing, resonant, metal mesh filter arrays with silicon support frames. The process can be customized to include multiple detector array architectures, and the silicon frame provides lightweight mechanical support with low form factor.  相似文献   
92.
The objective of this study was to investigate the extent of antimicrobial resistance and to genetically characterize resistant Escherichia coli recovered from a commercial beef packing plant. E. coli isolates were recovered by a hydrophobic grid membrane filtration method by direct plating on SD-39 medium. A total of 284 isolates comprising 71, 36, 55, 52, and 70 isolates from animal hides, washed carcasses, conveyers, beef trimmings, and ground beef, respectively, were analyzed. The susceptibility of E. coli isolates to 15 antimicrobial agents was evaluated with an automated broth microdilution system, and the genetic characterization of these isolates was performed by the random amplified polymorphic DNA (RAPD) method. Of the 284 E. coli isolates, 56% were sensitive to all 15 antimicrobial agents. Resistance to tetracycline, ampicillin, and streptomycin was observed in 38, 9, and 6% of the isolates, respectively. Resistance to one or more antimicrobial agents was observed in 51% of the E. coli isolates recovered from the hides but in only 25% of the E. coli from the washed carcasses. Resistance to one or more antimicrobial agents was observed in 49, 50, and 37% of the isolates recovered from conveyers, beef trimmings, and ground beef, respectively. The RAPD pattern data showed that the majority of resistant E. coli isolates were genetically diverse. Only a few RAPD types of resistant strains were shared among various sample sources. The results of this study suggest that antimicrobial-resistant E. coli isolates were prevalent during all stages of commercial beef processing and that considerably higher numbers of resistant E. coli were present on conveyers, beef trimmings, and ground beef than on dressed carcasses. This stresses the need for improving hygienic conditions during all stages of commercial beef processing and meatpacking to avoid the risks of transfer of antimicrobial-resistant bacteria to humans.  相似文献   
93.
94.
The rational design and fabrication of edible codelivery carriers are important to develop functional foods fortified with a plurality of bioactive agents, which may produce synergistic effects in increasing bioactivity and functionality to target specific health benefits. Food proteins possess considerable functional attributes that make them suitable for the delivery of a single bioactive agent in a wide range of platforms. Among the different types of protein-based carriers, protein–ligand nanocomplexes, micro/nanoparticles, and oil-in-water (O/W) emulsions have increasingly attracted attention in the codelivery of multiple bioactive agents, due to the simple and convenient preparation procedure, high stability, matrix compatibility, and dosage flexibility. However, the successful codelivery of bioactive agents with diverse physicochemical properties by using these simple-structure carriers is a daunting task. In this review, some effective strategies such as combined functional properties of proteins, self-assembly, composite, layer-by-layer, and interfacial engineering are introduced to redesign the carrier structure and explore the encapsulation of multiple bioactive agents. It then highlights success stories and challenges in the co-encapsulation of multiple bioactive agents within protein-based carriers with a simple structure. The partition, protection, and release of bioactive agents in these protein-based codelivery carriers are considered and discussed. Finally, safety and application as well as challenges of co-encapsulated bioactive agents in the food industry are also discussed. This work provides a state-of-the-art overview of protein-based particles and O/W emulsions in co-encapsulating bioactive agents, which is essential for the design and development of novel functional foods containing multiple bioactive agents.  相似文献   
95.
Wireless Personal Communications - Acoustic modem is one of the key elements of an underwater wireless sensor network (UWSN). Compared to a terrestrial wireless sensor network (WSN),...  相似文献   
96.
Wireless Personal Communications - A multi-stage Mach–Zehnder based integrated continuously tunable optical delay line with a large tunability range, increase transmission bandwidth and the...  相似文献   
97.
Fossil fuels are unable to meet the current energy demands and polluting the environment with the emission of harmful gases. Therefore, clean energy technology is need of the modern era. One of the energy conversion devices is fuel cell which utilized fuel from renewable sources and convert into electricity in an efficient and clean way. However, for commercialization of this technology high operating temperature, degradation of electrodes and manufacture cost is the key challenges in conventional three layer fuel cell. Significant improvements have been made to reduce the cost and operating temperature by selecting suitable materials. Therefore, single layer fuel cell (SLFC) has been got much attention due to simple geometry. The mechanism inside the SLFC is still mystery which has been explained in this paper using quantum mechanical parameters like band gap and effect of particle size on charge transportation.In this research work, nanocomposite materials for single layer fuel cell have been synthesized by chemical routes. The x-ray diffraction shows the cubic perovskite structure with average crystallite size in the range of 23–37 nm. The particle size and surface area is found to be 23 nm and 86.42 m2 g?1, respectively. Raman spectrum of LBSCF-SDC shows a red shift compared to LBSCF and band gap of the composition 3LBSCF-7SDC is found to be 2.51 eV. Moreover, the conductivity of the sample 3LBSCF-7SDC has been found to be 0.02 Scm?1 at 750 °C. The quantum mechanical effects governing the working of single layer fuel cells are observed by different analyses. Photon confinement and Fano-Interactions phenomena resulted in a red shift using Raman analysis technique. The red shift in Raman spectrum is referred to a photon confined in a single layer fuel cell system. These effects are studied in single layer fuel cell for the first time with no previous analyses done in this newly field.  相似文献   
98.
Food Science and Biotechnology - Onion and ginger are rich sources of bioactive compounds which are lost during conventional drying process. The present study was designed to optimize the novel...  相似文献   
99.
100.
In recent years, Body Area Networks (BANs) have gained immense popularity in the domain of healthcare as well as monitoring of soldiers in the battlefield. Security of a BAN is inevitable as we secure the lives of soldiers and patients. In this paper, we propose a security framework using Keyed-Hashing Message Authentication Code (HMAC-MD5) to protect the personal information in a BAN. We assume a network in which nodes sense physiological variables such as electrocardiography (EKG), electroencephalography (EEG), pulse oximeter data, blood pressure and cardiac output. Heterogeneous wireless sensor network is considered which consists of a powerful High-end sensor (H-sensor) and several Low-end sensors (L-sensors). EKG is used for secure communication between nodes as it introduces plug and play capability in BANs. The process is made secure by applying HMAC-MD5 on EKG blocks. Key agreement is done by comparing HMAC of feature blocks between sensors resulting in a more secure network. The analysis is done by calculating the entropy of keys and checking the randomness of EKG data using NIST-randomness testing suite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号