International Journal of Control, Automation and Systems - In this paper, we have addressed two issues for upper limb assist exoskeleton. 1) Estimation of Desired Motion Intention (DMI); 2) Robust... 相似文献
Development of cost efficient, flexible and light weight paper electrodes for high-tech applications is high in demand in era of modern disposable technology. In this study α-MnO2 nanorods were fabricated through hydrothermal method by varying growth time and further combined with lignocelluloses fibers extracted from self growing plant, Monochoria Vaginalis. Crystal structure, morphology and thermal properties of MnO2 nanorods were characterized by X. Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Thermogravimetric Analysis (TGA), respectively. FESEM image analysis revealed the highest aspect ratio of 48.016 for 4?h treated MnO2 sample and high purity level was confirmed by XRD. MnO2 sample with high aspect ratio, relatively pure and larger yield was selected for incorporation of lignocelluloses fibers to fabricate flexible, light-weight and environmentally safe LC/MnO2 composite paper sheet. Furthermore, LC/MnO2 composite sheet was employed as working electrode in 2?M sodium sulfate electrolyte for cyclic voltammetry measurements. Presented LC/MnO2 composite sheet revealed specific capacitances 117, 59, 39, 25 and 23?F/g at scan rates of 5, 10, 20, 50 and 100?mV/s, respectively. Incorporation of LC fibers within MnO2 nanorods as binders will open the possibilities to fabricate the flexible paper electrode for application in supercapacitors and batteries due to facile synthesis, light-weight and environmentally friendly aspects. 相似文献
The increasing use of heavy metals, dyes, and other metallic or chemical elements causes crucial environmental pollution. Sewage that contains these heavy metals and dyes is discharged into the atmosphere and goes directly into the food cycle, causing cancerous diseases and health deterioration in living organisms. The supreme concern of today’s research is to treat wastewater and effectively remove the hazardous dye molecules from aqueous media and other environmental matrices. Nowadays, technologies are applied to rectify organic and inorganic pollutants from sewage. Among them, adsorption is a fascinating way because it is environmentally friendly, feasible, and economical biomaterials. Chitosan (CS) as bio-sorbent is endowed with valuable characteristics, such as biodegradability, biocompatibility, high reactivity, low-cost, and functional groups (–OH and NH2) on its surface. CS is used for many applications, either as a single component or composite form. The use of CS as bio-adsorbents is beneficial over regular adsorbents. Chitosan-based hydrogel is one of the very important bio-adsorbents. All these bio-adsorbents are highly used to eradicate toxic dyes, digest harmful industrial sewage, and eliminate pesticides, climatic hazardous waste, and contaminated materials from the environment.
Fe2-xAgxO3 (0?≤?x?≤?0.04) nanopowders with various Ag contents were synthesized at different hydrothermal reaction temperatures (150?°C and 180?°C). Their structural properties were fully investigated through an X-ray diffraction, a Fourier transform infrared spectroscopy, and an X-ray photoelectron spectroscopy. The hydrothermal reaction temperature, time, and Ag content remarkably affected the morphological characteristics and crystal structure of the synthesized powders. The Fe2-xAgxO3 (0?≤?x?≤?0.04) powders synthesized at 150?°C for 6?h and the Fe2-xAgxO3 (0.02?≤?x?≤?0.04) powders synthesized at 180?°C for 12?h formed the orthorhombic α-FeOOH phase with a rod-like morphology, whereas the Fe2-xAgxO3 (0?≤?x?≤?0.01) powders synthesized at 180?°C for 12?h formed the rhombohedral α-Fe2O3 phase with a spherical-like morphology. The Fe1.98Ag0.02O3 fabricated by utilizing Fe1.98Ag0.02O3 powders synthesized at 180?°C showed the largest power factor (0.64?×10?5 Wm?1 K?2) and dimensionless figure-of-merit (0.0036) at 800?°C. 相似文献
The incorporation of functionalized nanoscale fillers into traditional glass fiber/unsaturated polyester (GF/UPE) composites provides a more robust mechanical attributes. The current study demonstrates the potential of 3-mercaptopropyl trimethoxysilane (MPTS)-functionalized carbon black (f-CB) for enhancing the thermo-mechanical properties of GF composites. The composites infused with 1, 3 and 5 wt% of pristine and MPTS-functionalized CB were fabricated by hand lay-up and hot press processing. Tensile testing, interlaminar shear strength (ILSS) testing and dynamic mechanical analysis were used to evaluate the performance of nanocomposites. Fourier transform infrared spectroscopy validated the MPTS functionalization of CB. Pristine CB-loaded nanocomposites exhibited marginal improvement in ultimate tensile strength (UTS), ILSS and thermo-mechanical properties. However, with the addition of f-CB, the improvement in all the studied properties was more substantial. The inclusion of 5 wt% f-CB increased the elastic modulus and UTS by 16 and 22%, respectively, whereas the ILSS was enhanced by 36%, in comparison to the neat GF composite. The scanning electron microscope analysis of fractured ILSS samples revealed better fiber-matrix adhesion and compatibility in f-CB-loaded nanocomposites. At the same filler weight percentage, the storage modulus at 25 °C was ~ 19% higher than that of neat composite. The f-CB inclusion resulted in increment of Tg by ~ 13 °C over the Tg of neat GF/UPE composite (~ 109 °C). These improvements were due to the chemical connection of f-CB to the UPE matrix and GF surface. With such improvements in thermal and mechanical properties, these nanocomposites can replace the conventional GF composites with prominent improvements in performance. 相似文献
Leaves of Chrysanthemum morifolium cv. Ramat were extracted sequentially with hexane, ethyl acetate, and methanol. The methanol fraction, when incorporated into artificial diet was found to reduce the growth of cabbage looper (Trichoplusia ni Hubner) larvae at concentrations between 500 and 5000 ppm of diet. Fractionation of the methanol extract on a Sephadex column yielded five fractions, three of which reduced the weight of larvae relative to the control. One fraction was analyzed using high performance liquid chromatography (HPLC) and found to contain three main constituents. These compounds were purified using a combination of gel permeation chromatography on Sephadex LH20 and HPLC, and analyzed by 1H and 13CNMR as well as undergoing chemical and physical analyses. The compounds were identified as: 1, chlorogenic acid (5-O-caffeoylquinic acid); 2, 3,5-O-dicaffeoylquinic acid; and 3, 3', 4',5-trihydroxyflavanone7-O-glucuronide (eriodictyol7-O-glucuronide). At concentrations between 100 to 1000 ppm these compounds reduced both growth and photosynthesis of Lemna gibba L. with the order of efficacy being: flavanone > chlorogenic acid > 3,5-O-dicaffeoylquinic acid. Furthermore, when incorporated separately into artificial diet these compounds, at 10 to 1000 ppm, enhanced or reduced growth of the cabbage looper (Trichoplusia ni) and gypsy moth (Lymantria dispar L.). 相似文献
Electric power system applications demand for high-temperature dielectric materials. The improved performance of polymer nanocomposites requires improvement in their thermal conductivity & stability, dielectric stability and processing technique. However, they often lose their dielectric properties with a rise in temperature. Here, we offer a solution by incorporating electrically conducting material (MXene) and semiconducting inorganic nanoparticles (ZnO NPs) into an insulating PMMA polymer matrix to maintain high dielectric constant, both at the room and high temperature. Therefore, to achieve desirable thermal and dielectric properties is the main objective of the present study based on the homogeneous distribution of the nanofillers by in-situ bulk polymerization assisted by strong sonication in the corresponding polymer. The introduction of MXene and ZnO NPs into the PMMA not only acquires a substantial increment in the dielectric constant, to attain a value 437, with minimum energy loss of 0.36 at 25 Hz, but also improves the thermal conductivity of PMMA up to 14 times by causing the reduction of thermal resistance, which is actually responsible for the poor thermal conductivity of amorphous pure PMMA polymer. More importantly, hybrid PMMA/4:2 wt% MXene:ZnO nanocomposite leads to an excellent thermal stability. Moreover, further characterization of the synthesized nanocomposites by FTIR, SEM and XRD leads to the evaluation of strong interaction of ternary components with PMMA matrix. 相似文献
We investigated the effect of surface hardening and micro-structural modifications in Mild steel (MS) with the addition of Boron Carbide, melted by thermionic electron beam. Boron Carbide in the form of powder was added by making grooves in MS samples to trap the molten solution for interaction with solid particles. These samples were irradiated by 10 KeV electron beam with variable beam current (50-100 mA). XRD confirmed the addition of Boron Carbide in the matrix and SEM indicated micro-structural changes introduced by the electron beam. Micro-structural modification further revealed that ferrites have been transformed into dendrites and pearlites have been refined as a result of re-solidified melt. This significantly has enhanced the surface hardness greater than 6-times compared to as received Mild steal. 相似文献
Multi-phase ac motor drives are nowadays considered for various applications, due to numerous advantages that they offer when compared to their three-phase counterparts. In principle, control methods for multi-phase machines are the same as for three-phase machines. Variable speed induction motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace the sensor, information of the rotor speed is extracted from measured stator currents and voltages at motor terminals. Vector controlled drives require estimating the magnitude and spatial orientation of the fundamental magnetic flux waves in the stator or in the rotor. Open-loop estimators and closed-loop observers are used for this purpose. They differ with respect to accuracy, robustness, and sensitivity against model parameter variations. This paper analyses operation of an open-loop and model reference adaptive system (MRAS)-based sensorless control of vector controlled five-phase induction machine with current control in the stationary reference frame. The MRAS-based sensorless operation of a three-phase induction machine is well established and the same principle is extended in this paper for an IRFOC five-phase induction machine. Performance, obtainable with hysteresis current control, is illustrated for a number of operating conditions on the basis of simulation results. Full decoupling of rotor flux control and torque control is realised. Dynamics, achievable with a five-phase vector controlled induction machine, are shown to be essentially identical to those obtainable with a three-phase induction machine. Experimental verification is also provided. 相似文献
This study quantifies emissions of hydrocarbon terpenes from the drying of sawdust in packed moving bed dryers, through the production chain to the finished pellets, and determines the parameters suitable for emission control. The terpene content in softwood sawdust and pellets was analyzed using gas chromatography. The distribution of VOC emissions over the bed was measured with a flame ionization detector. After drying, 30–40% of the initial terpenes remain in the wood, 20–30% remain after grinding, and 10–15% remain after pelleting. Dryer emissions correlate with residence time and final sawdust moisture content. Pellet press emissions correlate with pellet moisture content. 相似文献