Electric distribution networks have to deal with issues caused by natural disasters. These problems possess unique characteristics, and their severity can make load restoration methods impotent. One solution that can help in alleviating the aftermath is the use of microgrids (MGs). Employing the cumulative capacity of the generation resources through MG coupling facilitates the self-healing capability and leads to better-coordinated energy management during the restoration period, while the switching capability of the system should also be considered. In this paper, to form and schedule dynamic MGs in distribution systems, a novel model based on mixed-integer linear programming (MILP) is proposed. This approach employs graph-related theories to formulate the optimal formation of the networked MGs and management of their proper participation in the load recovery process. In addition, the Benders decomposition technique is applied to alleviate computability issues of the optimization problem. The validity and applicability of the proposed model are evaluated by several simulation studies. 相似文献
The effects of lamellar aluminum (Al) and micaceous iron oxide (MIO) pigments on the anticorrosion properties of an epoxy zinc-rich coating were studied. To this end, the epoxy zinc-rich coatings containing 70% w/w spherical Zn particles, 60% w/w Zn + 10% w/w MIO, and 60% w/w Zn + 10% w/w Al were prepared. The electrochemical noise (ECN), potentiostatic polarization technique, and salt spray test were employed in order to investigate the anticorrosion performances of the zinc-rich coatings. The zinc-rich coatings morphologies were studied by scanning electron microscope (SEM) before and after the salt spray test. The open-circuit potential values were also measured at different immersion times. Results showed that MIO particles could enhance the cathodic protection duration of the zinc-rich coating by enhancing its barrier properties and reducing the zinc particles oxidation rate. It was also shown that Al particles reduced zinc-rich coating sacrificial behavior at short immersion times and increased it at long immersion times. Unlike MIO particles, Al particles behaved both as barrier and sacrificial pigment. 相似文献
The Çeltikçi Coal Basin is a newly discovered coal basin in Central Anatolia where 11 years of open-cut mining has been planned. The bulk of the mining will be conducted below the regional water table; hence, determination of the dewatering requirements and proper design of the dewatering wells plays a critical role. This study (i) defined the dewatering requirements of the open-pit mine, (ii) established a dewatering well design for the area, and (iii) assessed the anticipated impacts of the dewatering activities. For this purpose, a 3-D numerical groundwater flow model was developed using the FEFLOW software. Yearly dewatering requirements were determined under transient conditions. For the dewatering well simulations, two types of dewatering wells were considered: permanent wells located at the open pit boundary that would increase in number as the excavation proceeds and wells located at the periphery of the yearly excavated area that would be operational for about two years. The simulation results indicated that 894 wells were required to satisfy dry working conditions; the average pumping rate throughout the mine life was calculated as 322 L/s. The impacts of open-pit dewatering on groundwater resources were assessed in terms of spring discharge and base flow rates in the nearby Kirmir stream. As a result of dewatering, most of the village water supply springs and fountains will dry up in the area. In addition, the base flow rates to the Kirmir stream will be decreased by 15%.
The influence of prior cold working on the friction and wear behavior of Cu–0.65 wt.%Cr alloy under dry sliding against a steel disk was investigated on a pin-on-disk wear tester. The worn surfaces and debrises of Cu–Cr alloy were analyzed by scanning electron microscope (SEM) and energy dispersive X-ray (EDX) spectrum. The results indicated that prior cold working and aging had an effect on the hardness and wear resistance of Cu–Cr alloy; in other words hardness and wear rate increased with the amount of cold working. At constant aging temperature, the wear rate of Cu–Cr alloys increase with cold working and reached maximum at 50% cold working. At constant amount of cold working aged specimens at 500 °C shows higher wear resistance than 450 °C. Crack initiation and propagation in the tribolayer and at the interface of subsurface and tribolayer was the dominant mechanism during the sliding process. 相似文献
Friction and wear behavior of a peak aged Cu–0.65 wt.%Cr alloy was investigated. The friction and wear experiments were run under ambient conditions with a pin-on-disk tribometer. Experiments were performed using various applied normal loads and sliding velocities. The tribological behavior of the studied alloy was discussed in terms of friction coefficient, wear loss and wear mechanism.Friction coefficient and wear loss have shown large sensitivity to the applied normal load and the sliding velocity. At the sliding velocity of 0.3 m/s weight loss increased from 6.9 to 51 mg by increasing the normal load from 20 to 40 N. At higher sliding velocity minimum weight loss is achieved at 60 N normal load. So it can be seen that with increasing normal load wear rate decreases due to the formation of a continuous tribofilm which consists of Fe–Cu intermetallic. Varying of friction coefficients in different conditions of normal load and sliding velocity is correlated to the wear behavior.The analysis of worn surfaces by XRD and SEM showed that an increase in normal load and sliding velocity creates an intermetallic wear-induced layer, which modifies the wear behavior of the alloy. The XRD result indicates that new phase of Cu9.9Fe0.1 is generated on worn surfaces of the pin specimens during the wear tests. There is a significant correlation between the micrograph of worn surfaces and the wear rate of specimens. 相似文献
Journal of Mechanical Science and Technology - In this study, we present the design and development of a compliant multi-link hopping mechanism actuated by a single DC motor. Mechanism consists of... 相似文献
Turkey is located on the highly active Eurasian plate. A very active strike slip fault, the North Anatolian Fault Zone (NAFZ), crosses Turkey from east to west; earthquakes occurred on this fault on August 17, 1999 (Kocaeli) and November 12, 1999 (Düzce). Regional geology and subsoil conditions can significantly change the characteristics of ground motion. For this reason, determining soil amplification during an earthquake, especially for soft soils, is a very important topic for researchers. In this study, one dimensional ground response analyses were performed for selected Adapazari sites using the August 17, 1999 Kocaeli earthquake strong ground motion record with SHAKE2000 software. Soil characteristics and depth to engineering bedrock at the selected sites are different and the observed level of structural damage at these sites during the Kocaeli earthquake was also different. Calculated soil surface response spectrums at these sites were compared with the recommended design spectra of the Turkish Earthquake Code and the Eurocode 8. According to one dimensional ground response analyses, the calculated response spectra of the selected sites exceed the recommended design spectra of the Turkish Earthquake Code and the Eurocode 8. Calculations show that higher amplification ratios occur at higher periods due to soil behaviour. Results of this study indicate that local geological conditions may amplify ground motion at some periods and, due to this amplification, the calculated response spectra may exceed the recommended design spectra. Therefore, it is clear that local site conditions must be considered for earthquake-resistant engineering designs on soft alluvial soil deposits. 相似文献
On‐road emission inventories in urban areas have typically been developed using traffic data derived from travel demand models. These approaches tend to underestimate emissions because they often only incorporate data on household travel, not including commercial vehicle movements, taxis, ride hailing services, and other trips typically underreported within travel surveys. In contrast, traffic counts embed all types of on‐road vehicles; however, they are only conducted at selected locations in an urban area. Traffic counts are typically spatially correlated, which enables the development of methods that can interpolate traffic data at selected monitoring stations across an urban road network and in turn develop emission estimates. This paper presents a new and universal methodology designed to use traffic count data for the prediction of periodic and annual volumes as well as greenhouse gas emissions at the level of each individual roadway and for multiple years across a large road network. The methodology relies on the data collected and the spatio‐temporal relationships between traffic counts at various stations; it recognizes patterns in the data and identifies locations with similar trends. Traffic volumes and emissions prediction can be made even on roads where no count data exist. Data from the City of Toronto traffic count program were used to validate the output of various algorithms, indicating robust model performance, even in areas with limited data. 相似文献