首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   19篇
  国内免费   2篇
电工技术   4篇
化学工业   165篇
金属工艺   10篇
机械仪表   12篇
建筑科学   34篇
矿业工程   2篇
能源动力   35篇
轻工业   62篇
水利工程   7篇
石油天然气   3篇
无线电   23篇
一般工业技术   63篇
冶金工业   21篇
原子能技术   1篇
自动化技术   67篇
  2024年   19篇
  2023年   11篇
  2022年   21篇
  2021年   30篇
  2020年   20篇
  2019年   28篇
  2018年   38篇
  2017年   29篇
  2016年   16篇
  2015年   25篇
  2014年   28篇
  2013年   46篇
  2012年   36篇
  2011年   28篇
  2010年   15篇
  2009年   32篇
  2008年   19篇
  2007年   17篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   3篇
  1983年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1970年   2篇
  1969年   1篇
排序方式: 共有509条查询结果,搜索用时 0 毫秒
71.
72.
73.
The effects of lamellar aluminum (Al) and micaceous iron oxide (MIO) pigments on the anticorrosion properties of an epoxy zinc-rich coating were studied. To this end, the epoxy zinc-rich coatings containing 70% w/w spherical Zn particles, 60% w/w Zn + 10% w/w MIO, and 60% w/w Zn + 10% w/w Al were prepared. The electrochemical noise (ECN), potentiostatic polarization technique, and salt spray test were employed in order to investigate the anticorrosion performances of the zinc-rich coatings. The zinc-rich coatings morphologies were studied by scanning electron microscope (SEM) before and after the salt spray test. The open-circuit potential values were also measured at different immersion times. Results showed that MIO particles could enhance the cathodic protection duration of the zinc-rich coating by enhancing its barrier properties and reducing the zinc particles oxidation rate. It was also shown that Al particles reduced zinc-rich coating sacrificial behavior at short immersion times and increased it at long immersion times. Unlike MIO particles, Al particles behaved both as barrier and sacrificial pigment.  相似文献   
74.
    
This study focuses on achieving mechanical enhancements in biocompatible organic coatings. A solvent-based method is employed to produce biocompatible nanocomposites using polyvinylpyrrolidone (PVP) and bentonite nanoclays (BNT) as constituents to achieve this objective. Subsequently, the nanocomposites are spin-coated onto a glass substrate, resulting in smooth and defect-free films with a thickness of 5 μm. Through instrumented-indentation testing, it is observed that BNT reinforcement leads to significant improvements in mechanical properties. Specifically, the addition of 0.5, 1, and 5 wt% of BNT in PVP results in enhancements of 105%, 77%, and 430% in elastic modulus, respectively, while hardness is improved by 166%, 211%, and 448%, respectively. The considerable improvements in the composite modulus cannot be adequately explained by assuming perfect adhesion between the constituents of the composite (as suggested by the Halpin–Tsai model) or by considering the contributions from the interface/network of silicate layers (as proposed by the Modified Halpin–Tsai model). Instead, the significant enhancements in hardness and modulus values are primarily attributed to a notable increase in the BNT volume fraction, ranging from 4 to 9 times, occurring under the Berkovich tip due to the aggregated silicate layers. The findings highlight the role of aggregated silicate layers in enhancing both hardness and modulus and contribute to the development of advanced biocompatible coatings with improved mechanical properties.  相似文献   
75.
76.
    
Cardiovascular disease is the leading cause of mortality and morbidity around the globe, creating a substantial socio-economic burden as a result. Myocardial infarction is a significant contributor to the detrimental impact of cardiovascular disease. The death of cardiomyocytes following myocardial infarction causes an immune response which leads to further destruction of tissue, and subsequently, results in the formation of non-contractile scar tissue. Macrophages have been recognized as important regulators and participants of inflammation and fibrosis following myocardial infarction. Macrophages are generally classified into two distinct groups, namely, classically activated, or M1 macrophages, and alternatively activated, or M2 macrophages. The phenotypic profile of cardiac macrophages, however, is much more diverse and should not be reduced to these two subsets. In this review, we describe the phenotypes and functions of macrophages which are present in the healthy, as well as the infarcted heart, and analyze them with respect to M1 and M2 polarization states. Furthermore, we discuss therapeutic strategies which utilize macrophage polarization towards an anti-inflammatory or reparative phenotype for the treatment of myocardial infarction.  相似文献   
77.
78.
79.
    
Cocaine is one of the most widely abused illicit drugs worldwide and has long been recognised as an agent of cardiac dysfunction in numerous cases of drug overdose. Cocaine has previously been shown to up-regulate cytoskeletal rearrangements and morphological changes in numerous tissues; however, previous literature observes such changes primarily in clinical case reports and addiction studies. An investigation into the fundamental cytoskeletal parameters of migration, adhesion and proliferation were studied to determine the cytoskeletal and cytotoxic basis of cocaine in cardiac cells. Treatment of cardiac myocytes with cocaine increased cell migration and adhesion (p < 0.05), with no effect on cell proliferation, except with higher doses eliciting (1–10 μg/mL) its diminution and increase in cell death. Cocaine downregulated phosphorylation of cofilin, decreased expression of adhesion modulators (integrin-β3) and increased expression of ezirin within three hours of 1 μg/mL treatments. These functional responses were associated with changes in cellular morphology, including alterations in membrane stability and a stellate-like phenotype with less compaction between cells. Higher dose treatments of cocaine (5–10 μg/mL) were associated with significant cardiomyocyte cell death (p < 0.05) and loss of cellular architecture. These results highlight the importance of cocaine in mediating cardiomyocyte function and cytotoxicity associated with the possible loss of intercellular contacts required to maintain normal cell viability, with implications for cardiotoxicity relating to hypertrophy and fibrogenesis.  相似文献   
80.
    
This study aims to acquire an understanding of the fundamental feature of IJV and DV under heating operation. Full-scale experiments were conducted under these two different systems and supply air conditions along with temperature distribution and ventilation effectiveness. A wall surface of the test room was cooled as a heating load, and heating elements simulating occupants were located as internal heat load and contaminant emission source. Three cases of supply temperature were tested and the flow rate was also varied correspondingly. The position of the supply terminal was also changed to see its effect on heating performance, that is, mounted on the interior/exterior wall. For DV, the temperature/contaminant distribution differed significantly depending on the supply conditions, while that of IJV remained almost the same as a perfect mixing condition. Generally, IJV can achieve better temperature distribution compared to DV; however, the ventilation effectiveness of DV was superior to that of IJV with large supply flow rate. The correlation between the Archimedes number based on supply conditions and indices expressing local temperature and ventilation effectiveness is obtained. For IJV, the position of the terminal was found to have a larger impact on air distribution than the supply flow rate, while the opposite feature was obtained for DV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号