Water separated from crude oil and wastewater discharge from petroleum oil refineries contains significant quantity of dissolved hydrocarbons. Polycyclic aromatic hydrocarbons (PAHs) are major toxicants in wastewater of refineries. It is difficult to treat wastewater containing PAHs due to their recalcitrant property and low solubility. Conventional techniques for the treatment of wastewater are still a concern of toxicity. Electrochemical oxidation process has been found to be a favorable for treating wastewater. Electrodes with high stability and electrocatalytic activity are important factors for a successful electrochemical oxidation of toxic organics in wastewater. In this study titanium anodes were coated with tin, antimony and iridium oxide mixture from their respective salts by thermal decomposition method. FESEM and XRD used for surface characterization of Ti/SnO2–Sb2O5–IrO2 anode. Quantification of PAHs was done using GC–MS. Results confirm the presence of respective oxides on anode surface. Their electrocatalytic capability was tested for degradation of 16 priority PAHs in aqueous solution. Results reveal the complete degradation of naphthalene, acenaphthylene, acenaphthene and fluorene without using NaCl electrolyte. While in the presence of NaCl naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene were completely removed. About 98% of total PAHs removal was found at all initial pH values 3, 6, and 9 in the presence of electrolyte. Current study will be helpful in improving quality of petroleum industry wastewater containing PAHs. 相似文献
Densifying the network by adding more minicell towers or relays throughout a hot spot area while extensively reusing the available spectrum is an essential choice to improve QoS. Unfortunately, this approach can be prohibitively costly. One possible solution to reduce the capital and operating expenditure in such overdensified networks is the adoption of the spectrum-sharing approach. However, both approaches would complicate the interference phenomenon either among inter- or intraoperators, which may cause serious performance degradation. In this paper, a fully hybrid spectrum-sharing (FHSS) approach aided by an efficient cell–carrier distribution was proposed with consideration to the interference dilemma. Moreover, an adaptive hybrid QoE-based mmWave user association (mUA) scheme was presented to assign a typical user to the serving mmWave base station (mBS), which offers the highest achievable data rate. The proposed FHSS approach (with the presented QoE-based mUA) was compared with recent works and with both FHSS approach using the conventional max-SINR-based mUA, which assigns a typical user to the tagged mBS carrying the highest signal-to-interference-plus noise ratio and the baseline scenario (licensed spectrum access). In particular, three spectrum access methods (licensed, semipooled, and fully pooled) were integrated in a hybrid manner to engage improved data rates to users. Numerical results show that the joint cell–carrier distribution and FHSS approach with QoE-based mUA outperform both baselines FHSS with the max-SINR mUA scheme and the licensed spectrum access. Furthermore, results demonstrate the effectiveness of the proposed approach in terms of both operators’ independence and fairness.
A routing protocol chooses one of the several paths (routes) from a source node to a destination node in the computer network, to send a packet of information. In this paper, we propose a new routing protocol, which we call st-routing protocol, based on st-numbering of a graph. The protocol fits well in noisy environments where robustness of routing using alternative paths is a major issue. The proposed routing protocol provides a systematic way to retry alternative paths without generating any duplicate packets. The protocol works for only those networks that can be represented by biconnected graphs. 相似文献
High peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems seriously impacts power efficiency in radio frequency section due to the nonlinearity of high-power amplifiers. In this article, an improved gamma correction companding (IGCC) is proposed for PAPR reduction and investigated under multipath fading channels. It is shown that the proposed IGCC provides a significant PAPR reduction while improving power spectral levels and error performances when compared with the previous gamma correction companding. IGCC outperforms existing companding methods when a nonlinear solid-state power amplifier (SSPA) is considered. Additionally, with the introduction of \(\alpha , \beta , \gamma \), and \(\varDelta \) parameters, the improved companding can offer more flexibility in the PAPR reduction and therefore achieves a better trade-off among the PAPR gain, bit error rate (BER), and power spectral density (PSD) performance. Moreover, IGCC improves the BER and PSD performances by minimizing the nonlinear companding distortion. Further, IGCC improves signal-to-noise ratio (SNR) degradation (\(\varDelta _{\mathrm{SNR}}\)) and total degradation performances by 12.2 and 12.8 dB, respectively, considering an SSPA with input power back-off of 3.0 dB. Computer simulation reveals that the performances of IGCC are independent of the modulation schemes and works with arbitrary number of subcarriers (N), while it does not increase computational complexity when compared with the existing companding schemes used for PAPR reduction in OFDM systems. 相似文献
Traditional cryptanalysis assumes that an adversary only has access to input and output pairs, but has no knowledge about internal states of the device. However, the advent of side-channel analysis showed that a cryptographic device can leak critical information. In this circumstance, Machine learning is known as a powerful and promising method of analysing of side-channel information. In this paper, an experimental investigation on a FPGA implementation of elliptic curve cryptography (ECC) was conducted to explore the efficiency of side-channel information characterisation based on machine learning techniques. In this work, machine learning is used in terms of principal component analysis (PCA) for the preprocessing stage and a Cascade-Forward Back-Propagation Neural Network (CFBP) as a multi-class classifier. The experimental results show that CFBP can be a promising approach in characterisation of side-channel information. 相似文献
Coarse wavelength division multiplexing (CWDM) network has proven to be promising lower cost network architecture for a significant cost advantage over dense wavelength division multiplexing due to the lower cost of lasers and the filters used in CWDM modules. A compatible amplifier module having bidirectional amplification capability was deployed for introducing inside stackable reconfigurable optical add/drop multiplexers in realizing large-scale CWDM networks. The amplifier module for use in the bidirectional IP transmission confirmed that the insertion losses of the nodes and the losses of the fibers connecting the nodes can be compensated effectively, allowing the network administrator to increase the number of nodes and fiber length of the network. However, the noise generated from the amplification due to amplified spontaneous emission must be considered in network design issues. In this paper, optical power penalties due to the bidirectional amplification were estimated by conducting experimentation on minimum detectable power of optical transceivers. After analyzing the power penalty issue, an IP-over-CWDM ring network was implemented and the performance of network was evaluated by monitoring the power and packet transmissions before and after the amplifier module was turned on. 相似文献
With the current technology, all-optical networks require nonblocking switch architectures for building optical cross-connects. The crossbar switch has been widely used for building an optical cross-connect due to its simple routing algorithm and short path setup time. It is known that the crossbar suffers from huge signal loss and crosstalk. The Clos network uses a crossbar as building block and reduces switch complexity, but it does not significantly reduce signal loss and crosstalk. Although the Spanke's network eliminates the crosstalk problem, it increases the number of switching elements required considerably (to 2N2 - 2N). In this paper, we propose a new architecture for building nonblocking optical switching networks that has much lower signal loss and crosstalk than the crossbar without increasing switch complexity. Using this architecture we can build non-squared nonblocking networks that can be used as building block for the Clos network. The resulting Clos network will then have not only lower signal loss and crosstalk but also a lower switch complexity. 相似文献
Growing ducklings were fed diets containing an aquatic weed Lemna trisulaca meal (LTM) replacing, on a protein basis, either 40, 60 or 80 g kg?1 of the fish meal (FM) from a control diet which contained 120 g FM kg?1. Partial replacement of FM (40 and 60 g kg?1 of the FM) by LTM on a protein basis showed good growth and low food consumption but food conversion efficiency was found to be comparable. It was concluded that LTM could be considered as a protein feed supplement for growing ducklings and also as a part replacement of animal protein (FM) in the nutrition of growing ducklings without deleterious effect on performance. 相似文献