首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86140篇
  免费   999篇
  国内免费   409篇
电工技术   788篇
综合类   2317篇
化学工业   11826篇
金属工艺   4826篇
机械仪表   3066篇
建筑科学   2284篇
矿业工程   569篇
能源动力   1158篇
轻工业   3807篇
水利工程   1301篇
石油天然气   342篇
无线电   9492篇
一般工业技术   16630篇
冶金工业   3251篇
原子能技术   271篇
自动化技术   25620篇
  2019年   30篇
  2018年   14478篇
  2017年   13399篇
  2016年   9999篇
  2015年   623篇
  2014年   269篇
  2013年   308篇
  2012年   3210篇
  2011年   9534篇
  2010年   8340篇
  2009年   5618篇
  2008年   6863篇
  2007年   7870篇
  2006年   219篇
  2005年   1319篇
  2004年   1204篇
  2003年   1238篇
  2002年   609篇
  2001年   158篇
  2000年   233篇
  1999年   119篇
  1998年   172篇
  1997年   103篇
  1996年   124篇
  1995年   56篇
  1994年   60篇
  1993年   41篇
  1992年   46篇
  1991年   44篇
  1990年   35篇
  1989年   38篇
  1988年   47篇
  1987年   33篇
  1986年   37篇
  1985年   46篇
  1984年   41篇
  1983年   39篇
  1969年   32篇
  1968年   45篇
  1967年   34篇
  1966年   43篇
  1965年   46篇
  1963年   30篇
  1960年   30篇
  1959年   35篇
  1958年   37篇
  1957年   38篇
  1956年   36篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
This study focuses on the potential of hydrogen-rich syngas production by CO2 reforming of methane over Co/Pr2O3 catalyst. The Co/Pr2O3 catalyst was synthesized via wet-impregnation method and characterized for physicochemical properties by TGA, XRD, BET, H2-TPR, FESEM, EDX, and FTIR. The CO2 reforming of methane over the as-synthesized catalyst was studied in a tubular stainless steel fixed-bed reactor at feed ratio ranged 0.1–1.0, temperature ranged 923–1023 K, and gas hourly space velocity (GHSV) of 30,000 h?1 under atmospheric pressure condition. The catalyst activity studies showed that the increase in the reaction temperature from 923 to 1023 K and feed ratio from 0.1 to 1.0 resulted in a corresponding increase in the reactant’s conversion and the product’s yields. At 1023 K and feed ratio of 1.0, the activity of the Co/Pr2O3 catalyst climaxed with CH4 and CO2 conversions of 41.49 and 42.36 %. Moreover, the catalyst activity at 1023 K and feed ratio of 1.0 resulted in the production of H2 and CO yields of 40.7 and 40.90 %, respectively. The syngas produced was estimated to have H2:CO ratio of 0.995, making it suitable as chemical building blocks for the production of oxygenated fuel and other value-added chemicals. The used Co/Pr2O3 catalyst which was characterized by TPO, XRD, and SEM-EDX show some evidence of carbon formation and deposition on its surface.  相似文献   
122.
This paper describes an inverse procedure to determine the constitutive constants and the friction conditions in the machining processes using Finite Elements (FE) simulations. In general, the FE modeling of machining processes is an effective tool to analyze the materials machinability under different cutting conditions. However, the use of reliable rheological and friction models represents the basis of a correct numerical investigation. The presented inverse procedure was based on the numerical results obtained using a commercial FE code and was developed considering a specific optimization problem, in which the objective functions that have to be minimized is the experimental/numerical error. This problem was performed by a routine developed in a commercial optimization software. In order to verify the goodness and the robustness of the methodology, it was applied on a Super Duplex Stainless Steel (SDSS) and on an Austenitic Stainless Steel (AUSS) orthogonal machining processes. This work, then, was focused on the identification of the Johnson-Cook (JC) coefficients (A,B,C, n and m) and on the calibration of a Coulomb friction model, in the specific cases of the SAF2507 SDSS and of an AISI 316 Based AUSS Alloy (AISI 316 ASBA). The identification phases were performed considering forces and temperatures experimental data, collected in two specific experimental tasks in which different orthogonal cutting tests were carried out under different cutting parameters conditions.  相似文献   
123.
The issues of hydrogen generation and storage have hindered the widespread use and commercialization of hydrogen fuel cell vehicles.It is thus highly attractive,but the design and development of highly active non-noble-metal catalysts for on-demand hydrogen release from alkaline NaBH4 solution under mild conditions remains a key challenge.Herein,we describe the use of CoP nanowire array integrated on a Ti mesh (CoP NA/Ti) as a three-dimensional (3D) monolithic catalyst for efficient hydrolytic dehydrogenation of NaBH4 in basic solutions.The CoP NA/Ti works as an on/off switch for on-demand hydrogen generation at a rate of 6,500 mL/(min.g) and a low activation energy of 41 kJ/mol.It is highly robust for repeated usage after recycling,without sacrificing catalytic performance.Remarkably,this catalyst also performs efficiently for the hydrolysis of NH3BH3.  相似文献   
124.
Cerium oxide nanoparticles (CONPs), widely used in catalytic applications owing to their robust redox reaction, are now being considered in therapeutic applications based on their enzyme mimetic properties such as catalase and super oxide dismutase (SOD) mimetic activities. In therapeutic applications, the emerging demand for CONPs with low cytotoxicity, high cost efficiency, and high enzyme mimetic capability necessitates the exploration of alternative synthesis and effective material design. This study presents a room temperature aqueous synthesis for low-cost production of shape-selective CONPs without potentially harmful organic substances, and additionally, investigates cell viability and catalase and SOD mimetic activities. This synthesis, at room temperature, produced CONPs with particular planes: {111}/{100} nanopolyhedra, {100} nano/submicron cubes, and {111}/{100} nanorods that grew in [110] longitudinal direction. Enzymatic activity assays indicated that nanopolyhedra with a high concentration of Ce4+ ions promoted catalase mimetic activity, while nanocubes and nanorods with high Ce3+ ion concentrations enhanced SOD mimetic activity. This is the first study indicating that shape and facet configuration design of CONPs, coupled with the retention of dominant, specific Ce valence states, potentiates enzyme mimetic activities. These findings may be utilized for CONP design aimed at enhancing enzyme mimetic activities in therapeutic applications.
  相似文献   
125.
Despite great interests in electrochemical energy storage systems for numerous applications, considerable challenges remain to be overcome. Among the various approaches to improving the stability, safety, performance, and cost of these systems, molecular functionalization has recently been proved an attractive method that allows the tuning of material surface reactivity while retaining the properties of the bulk material. For this purpose, the reduction of aryldiazonium salt, which is a versatile method, is considered suitable; it forms robust covalent bonds with the material surface, however, with the formation of multilayer structures and sp3 defects (for carbon substrate) that can be detrimental to the electronic conductivity. Alternatively, non-covalent molecular functionalization based on ππ interactions using aromatic ring units has been proposed. In this review, the various advances in molecular functionalization concerning the current limitations in lithium-ion batteries and electrochemical capacitors are discussed. According to the targeted applications and required properties, both covalent and non-covalent functionalization methods have proved to be very efficient and versatile. Fundamental aspects to achieve a better understanding of the functionalization reactions as well as molecular layer properties and their effects on the electrochemical performance are also discussed. Finally, perspectives are proposed for future implementation of molecular functionalization in the field of electrochemical storage.
  相似文献   
126.
A facile one-step approach to synthesize various phase-separated porous, raspberry-like, flower-like, core–shell and anomalous nanoparticles and nanocapsules via 1,1-diphenylethene (DPE) controlled soap-free emulsion copolymerization of styrene (S) with glycidyl methacrylate (GMA), or acrylic acid (AA) is reported. By regulating the mass ratio of S/GMA, transparent polymer solution, porous and anomalous P(S-GMA) particles could be produced. The P(S-GMA) particles turn from flower-like to raspberry-like and then to anomalous structures with smooth surface as the increase of divinylbenzene (DVB) crosslinker. Transparent polymer solution, nanocapsules and core–shell P(S-AA) particles could be obtained by altering the mole ratio of S/AA; anomalous and raspberry-like P(S-AA) particles are produced by adding DVB. The unpolymerized S resulted from the low monomer conversion in the presence of DPE aggregates to form nano-sized droplets, and migrates towards the external surfaces of the GMA-enriched P(S-GMA) particles and the internal bulk of the AA-enriched P(S-AA) particles. The nano-sized droplets function as in situ porogen, porous P(S-GMA) particles and P(S-AA) nanocapsules are produced when the porogen is removed. This novel, facile, one-step method with excellent controllability and reproducibility will inspire new strategies for creating hierarchical phase-separated polymeric particles with various structures by simply altering the species and ratio of comonomers. The drug loading and release experiments on the porous particles and nanocapsules demonstrate that the release of doxorubicin hydrochloride is very slow in weakly basic environment and quick in weakly acidic environment, which enables the porous particles and nanocapsules with promising potential in drug delivery applications.
  相似文献   
127.
The acid-catalyzed ring-opening reaction of styrene oxide was used as a probe reaction for evaluating the acidic properties of carboxylated carbocatalysts. Significant discrepancies in the initial reaction rates were normalized using the total number of carboxyl groups, and demonstrated that the average catalytic activities of the carboxyl moieties on the carbocatalysts differed. Comparisons between the apparent activation energy E a and the pre-exponential factor A, derived from Arrhenius analysis, demonstrated that A varied more significantly, and therefore had a more significant effect on the reaction rates than E a. The variation in the calculated pKa values of the carboxyl groups was attributed to the electronic effects of the nitro groups. This hypothesis was supported by the temperature programmed desorption profiles of nitrogen monoxide ions.
  相似文献   
128.
Dorina Stahl 《NTM》2016,24(3):279-308
At the end of the nineteenth century, after twelve years of intensive research, the ophthalmologist Theodor Leber (1840–1917) established the chemotaxis of leukocytes as part of inflammation research. Although at the time his theory was smoothly enlisted into immunological research, up until now his name has been connected to chemotaxis only in the English-language literature. Leber was able to use his experimental system to develop a theory of the chemical attraction of the leukocytes during inflammation processes by the beginning of the 1880s, but his unconventional methodology—introducing chemically neutral contaminants in order to trigger inflammation in the eyes of rabbits—contradicted the basic bacteriological Denkstil (style of thought) of inflammation research at the time. Leber held fast to his research practice, which consisted of closely interlocking experimental and theoretical work. Only when an opening appeared in the bacteriological Denkstil was Leber able to transform his experimental observations, written on loose sheets of paper, into convincing evidence for his theory of inflammation. This micro-historical reconstruction of Leber’s experimental and written work, based on his original lab protocols, opens up the research practice of a scientist who was not recognized by the established microbiological inflammation research of the time. Moreover, persistent factors in the generation of knowledge are revealed by connecting this micro-historical reconstruction with a macro-history analysis. Indeed Leber developed his specific paper technology in order to mobilise and stabilise the scientific findings gained through experiment because of the persistence of the bacteriological Denkstil.  相似文献   
129.
The ultrasonic attenuation due to phonon–phonon interaction, thermoelastic relaxation and dislocation damping mechanisms has been investigated in cerium monopnictides CeX (X: N, P, As, Sb and Bi) for longitudinal and shear waves along \({\langle }100{\rangle }\), \({\langle }110{\rangle }\) and \({\langle }111{\rangle }\) directions. The second- and third-order elastic constants of CeX have also been computed in the temperature range 0 K to 500 K using Coulomb and Born–Mayer potential upto second nearest neighbours. The computed values of these elastic constants have been applied to find out Young’s moduli, bulk moduli, Breazeale’s non-linearity parameters, Zener anisotropy, ultrasonic velocity, ultrasonic Grüneisen parameter, thermal relaxation time, acoustic coupling constants and ultrasonic attenuation. The fracture/toughness ratio is less than 1.75, which shows that the chosen materials are brittle in nature as found for other monopnictides. The drag coefficient acting on the motion of screw and edge dislocations due to shear and compressional phonon viscosities of the lattice have also been evaluated for both the longitudinal and shear waves. The thermoelastic loss and dislocation damping loss are negligible in comparison to loss due to Akhieser damping (phonon–phonon interaction). The obtained results for CeX are in qualitative agreement with other semi-metallic monopnictides.  相似文献   
130.
In this paper, we report the biosynthesis and characterization of copper oxide nanoparticles from an aquatic noxious weed, Eichhornia crassipes by green chemistry approach. The aim of this work is to synthesize copper oxide nanoparticles by simple, cost-effective and ecofriendly method as an alternative to other available techniques. The synthesized copper oxide nanoparticles were characterized by UV–visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM) and Energy dispersive X-ray spectroscopy (EDX) analyses. The synthesized particles were highly stable, spherical in shape with an average diameter of 28 ± 4 nm. The synthesized nanoparticles were then explored to antifungal activity against plant pathogens. Highest zone of inhibition were observed in 100 μg ml ? 1 of Eichhornia-mediated copper oxide nanoparticle against Fusarium culmorum and Aspergillus niger. This Eichhornia-mediated copper oxide nanoparticles were proved to be good antifungal agents against plant fungal pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号