首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   17篇
  国内免费   1篇
电工技术   3篇
综合类   1篇
化学工业   96篇
金属工艺   14篇
机械仪表   17篇
建筑科学   15篇
能源动力   30篇
轻工业   32篇
水利工程   1篇
无线电   24篇
一般工业技术   100篇
冶金工业   15篇
原子能技术   5篇
自动化技术   17篇
  2023年   7篇
  2022年   5篇
  2021年   8篇
  2020年   14篇
  2019年   6篇
  2018年   11篇
  2017年   13篇
  2016年   13篇
  2015年   7篇
  2014年   23篇
  2013年   30篇
  2012年   28篇
  2011年   31篇
  2010年   23篇
  2009年   21篇
  2008年   12篇
  2007年   18篇
  2006年   6篇
  2005年   10篇
  2004年   14篇
  2003年   15篇
  2002年   5篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   5篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1977年   1篇
  1975年   1篇
  1965年   2篇
  1962年   1篇
排序方式: 共有370条查询结果,搜索用时 15 毫秒
281.
Enzymatic conversion of fatty acids (FAs) by fatty acid hydratases (FAHs) presents a green and efficient route for high-value hydroxy fatty acid (HFA) production. However, limited diversity was achieved among HFAs, to date, with respect to chain length and hydroxy position. In this study, two highly similar FAHs from Lactobacillus acidophilus were compared: FA-HY2 has a narrow substrate scope and strict regioselectivity, whereas FA-HY1 utilizes longer chain substrates and hydrates various double-bond positions. It is revealed that three active-site residues play a remarkable role in directing substrate specificity and regioselectivity of hydration. If these residues on FA-HY2 are mutated to the corresponding ones in FA-HY1, a significant expansion of substrate scope and a distinct enhancement in hydration of double bonds towards the ω-end of FAs is observed. A three-residue mutant of FA-HY2 (TM-FA-HY2) displayed an impressive reversal of regioselectivity towards linoleic acid, shifting the ratio of the HFA regioisomers (10-OH/13-OH) from 99:1 to 12:88. Notable changes in regioselectivity were also observed for arachidonic acid and for C18 polyunsaturated fatty acid substrates. In addition, TM-FA-HY2 converted eicosapentaenoic acid into its 12-hydroxy product with high conversion at the preparative scale. Furthermore, it is demonstrated that microalgae are a source of diverse FAs for HFA production. This study paves the way for tailor-made FAH design to enable the production of diverse HFAs for various applications from the polymer industry to medical fields.  相似文献   
282.
In this study, an artificial neural network model has been created in order to estimate the specific heat of Cu-Al2O3/water hybrid nanofluid based on temperature (T) and volume concentration (φ). Specific heat values of the Cu-Al2O3/water hybrid nanofluid prepared in five-volume concentration were measured experimentally in the 20°C to 65°C temperature range. The dataset was reserved into three primary parts, with the inclusion of 901 (70%) for the training, 257 (20%) for the test and 129 (10%) for the validation. As a result of comparison with experimental values, it is concluded that this model predicts specific heat with R-value of 0.99994 and an average relative error of approximately 5.84e-9. In addition, a mathematical correlation has been developed to estimate the specific heat of the Cu-Al2O3/water hybrid nanofluid. The data acquired from the mathematical correlation, developed, were in great correlation with all the experimental values with an average deviation of −0.005%. This result has revealed that the developed mathematical correlation is an ideal design for estimating the specific heat of the Cu-Al2O3/water hybrid nanofluid.  相似文献   
283.
The innovative design of segmented thermoelectric generator with exponential area variation is introduced. Thermal efficiency and power output are assessed for various values of the design parameter (a = (L/x) ln[Aa/A(x)], where Aa is constant, and a is the dimensionless geometric parameter, L is the pin length, and A(x) is the pin cross‐sectional area), external load parameter (RL/R0, ratio of external electrical resistance to reference electrical resistance), and temperature parameter (θ = Tlow/Thigh, ratio of cold junction temperature to high junction temperature). The device efficiency obtained is validated through the previous experimental data for various hot and cold junction temperature differences. The findings reveal that thermal efficiency resulted from the current study agrees well with the experimental data. The innovative design of the segmented thermoelectric generator with exponentially decaying pin configuration enhances the thermal efficiency and output power as compared with the device having a single material pin configuration. Increasing temperature ratio results in the reduction in the thermal efficiency and the output power of thermoelectric generator. In addition, lowering the external load parameter improves the thermal efficiency and the output power of the thermoelectric device. The design parameter that maximizes the thermal efficiency of the thermoelectric generator does not maximize the device output power.  相似文献   
284.
The synthesis of hydroxy fatty acids(HFAs) from renewable oil feedstock by addition of water onto C_C bonds has attracted great attention in recent years. Given that selective asymmetric hydration of non-activated C_C bonds has been proven difficult to achieve with chemical catalysts, enzymatic catalysis by fatty acid hydratases(FAHs) presents an attractive alternative approach to produce value-added HFAs with high regio-, enantioand stereospecificity, as well as excellent atom economy. Even though FAHs have just been investigated as a potential biocatalyst for a decade, remarkable information about FAHs in different aspects is available; however, a comprehensive review has not been archived. Herein, we summarize the research progresses on biochemical characterization, structural and mechanistic determination, enzyme engineering, as well as biotechnological application of FAHs. The current challenges and opportunities for an efficient utilization of FAHs in organic synthesis and industrial applications are critically discussed.  相似文献   
285.
The development of efficient solar thermal receivers has received significant interest for solar to electrical power conversion and heating applications. Volumetric flow receivers, where the incoming solar radiation is absorbed in the volume of a heat transfer fluid (HTF), promise reduced heat loss at the surface compared to surface absorbers. In order to efficiently store the thermal energy in the volume, nanoparticles can be suspended in the HTF to absorb the incoming radiation. In such systems, compact models are needed to design and optimize the performance. This paper presents an analytical model that investigates the effect of heat loss, particle loading, solar concentration and channel height on receiver efficiency. The analytical model was formulated by modeling the absorption of solar radiation by the suspended nanoparticles as a volumetric heat release inside the flowing HTF. The energy equation was solved with the surface heat losses modeled using a combined radiative and convective heat loss coefficient. The analytical solution provides a convenient tool for predicting the effect of different parameters, in terms of dimensionless numbers (Pe, NuE, G¯, and θamb), on two-dimensional temperature profiles and system performance. By combining the receiver efficiency with a power generation efficiency, idealized by the Carnot efficiency, an optimum receiver length where the total efficiency is maximized is determined. However, in practice, the maximum efficiency depends on the maximum allowable temperature of the working HTF. As a case study, predictions were made for Therminol® VP-1 with suspended graphite nanoparticles in a 1 cm deep channel with a solar concentration of 10. The model predicts an optimum total system efficiency of 0.35 for a dimensionless receiver length of 0.86. Finally, the analytical model was used to estimate the optimum efficiency and the corresponding optimum receiver length for different design configurations with varying NuE and G¯. The results from this paper will help guide experimental design of volumetric flow receivers for solar thermal based power systems.  相似文献   
286.
In this study, polyindole (PIN) and polyindole/polyethylene (PIN/PE) conducting composites, having various amounts of PIN, were synthesized by chemical polymerization using FeCl3 as an oxidizing agent and taking the ratio of salt:monomer as 3:1. The samples of PIN and PIN/PE composites were characterized by FTIR, UV–vis, TGA, SEM, Gouy scale magnetic susceptibility, conductivity (1.2 × 10−3 S cm−1 > σ > 1.96 × 10−6 S cm−1, at T = 25 °C) and density measurements. FTIR analysis suggested a 2,3-propagation mechanism for PIN formation. The ground milled samples were subjected to particle size analysis by dynamic light scattering (DLS) and a micron-sized particle distribution was obtained. A series of volume fractions ( = 10–25%) were prepared from the materials in silicone oil (SO) and their sedimentation stabilities determined. The most stable composite [PIN(89%)/PE(11%)] against gravitational sedimentation was subjected to flow-rate measurements under externally applied electric field strength (E) and an electrorheological (ER) activity was observed; threshold energies (Et) were calculated. The effects of volume fraction, shear rate, external E, frequency and temperature onto ER activities of the suspensions were investigated. Enhancement in the electric field viscosities and shear thinning viscoelastic behaviors were observed for all the samples studied. Recoverable viscoelastic deformations were determined from the creep tests under external E.  相似文献   
287.
Preparation of E‐glass/waterborne epoxy prepregs containing natural nanoclay and properties of their composites are presented. Prepregs were prepared by wetting randomly oriented, chopped glass fiber preforms with aqueous dispersion of EpiRez 3522‐W‐60 resin, dicyandiamide, 2‐methylimidazole and natural nanoclay (Cloisite® Na+). The nanoclay content of the aqueous dispersion was adjusted to yield final nanoclay contents of 0, 1, 2, and 4 wt%, whereas the glass fiber content is kept constant at 47 wt%. These prepregs were then used to fabricate disk‐shaped composite samples by APA2000 rheometer. Composite samples were tested for interlaminar shear strength, flexural stiffness, and glass transition temperature. The flexural stiffness was observed to increase by more than 26% over the range of nanoclay loading, despite a 13% decrease in interlaminar shear strength. Similarly, glass transition temperature increased from 89°C to above 94°C for the samples comprising 4 wt% nanoclay. X‐ray diffraction analyses indicated 48% increase in the gallery spacing suggesting strong intercalation of the nanoclay platelets by the epoxy matrix. Microstructural observations of the fracture surfaces and polished surfaces show significant differences in the matrix topology and fiber to matrix adhesion. The composites with higher nanoclay content depict uniform and submicron surface features implying homogenous dispersion of nanoclay. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   
288.
In this study, first polyindole (PIN) was synthesized using FeCl3 as an oxidizing agent. Then, an organo‐montmorillonite (O‐MMT) was prepared from virgin montmorillonite (MMT) by cetyltrimethylammonium bromide (CTAB) quaternary ammonium salt. Further, PIN/O‐MMT conducting nanocomposite was prepared with 18% O‐MMT content. The samples of PIN, MMT, O‐MMT, and PIN/O‐MMT nanocomposite were characterized by FTIR spectroscopy, thermogravimetric analysis (TGA), X‐ray diffraction (XRD), elemental analysis, conductivity, magnetic susceptibility, density, particle size measurements, and scanning electron microscopy (SEM) method. Characterization results showed a successfully prepared PIN/O‐MMT nanocomposite having both intercalated and exfoliated structures. A series of concentrations (5–25%, m/m) were prepared from those above‐mentioned materials in silicone oil (SO) and their sedimentation stabilities were determined. The suspensions were subjected to an external electric field strength and electrorheological (ER) activity was observed. The effects of dispersed particle concentration, shear rate, external electric field strength, frequency, and temperature onto ER activities of these suspensions were investigated. Creep tests were applied to all the four suspensions and recoverable viscoelastic deformations observed. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   
289.
Reaction of unsymmetrical benzimidazolium bromides (1) with Ag2O and subsequent transmetallation with chloro-bridged dinuclear palladacycle, [Pd(dmba)(μ-Cl)]2 (dmba: N,N-dimethylbenzylamine) afforded benzannulated monocarbene complexes [Pd(dmba)(NHC)Cl], 2. The palladacycles (2ac) were characterized by elemental analysis; NMR spectroscopy and the molecular structure of 2a and 2c were determined by X-ray crystallography.  相似文献   
290.
In the present work, Bi?CPb?CV?CSr?CCa?CCu?CTi?CO bulk samples with nominal composition (BiPb)2V x Sr2Ca3Cu4?y Ti y O12+?? with x=0.1 and y=0.050, 0.10, 0.2, and 0.3 have been prepared by the melt-quenching method. The magnetoresistance of the samples has been measured for different values of the applied magnetic field. The thermally activated flux creep model has been studied in order to calculate the flux pinning energies. The flux pinning energies calculated increase with increasing Ti-content, and decrease with applied magnetic field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号