首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6680篇
  免费   508篇
  国内免费   9篇
电工技术   78篇
综合类   2篇
化学工业   1939篇
金属工艺   114篇
机械仪表   203篇
建筑科学   286篇
矿业工程   24篇
能源动力   261篇
轻工业   986篇
水利工程   60篇
石油天然气   35篇
无线电   417篇
一般工业技术   1044篇
冶金工业   326篇
原子能技术   47篇
自动化技术   1375篇
  2024年   22篇
  2023年   97篇
  2022年   273篇
  2021年   311篇
  2020年   210篇
  2019年   235篇
  2018年   278篇
  2017年   296篇
  2016年   280篇
  2015年   233篇
  2014年   313篇
  2013年   571篇
  2012年   447篇
  2011年   555篇
  2010年   375篇
  2009年   408篇
  2008年   343篇
  2007年   318篇
  2006年   264篇
  2005年   197篇
  2004年   146篇
  2003年   166篇
  2002年   134篇
  2001年   77篇
  2000年   83篇
  1999年   64篇
  1998年   56篇
  1997年   57篇
  1996年   52篇
  1995年   40篇
  1994年   32篇
  1993年   28篇
  1992年   15篇
  1991年   22篇
  1990年   14篇
  1989年   22篇
  1988年   12篇
  1987年   12篇
  1986年   11篇
  1985年   14篇
  1984年   9篇
  1983年   8篇
  1982年   14篇
  1981年   6篇
  1980年   9篇
  1979年   10篇
  1978年   19篇
  1976年   8篇
  1975年   5篇
  1973年   5篇
排序方式: 共有7197条查询结果,搜索用时 15 毫秒
991.
The effect of microgravity on the electrochemical oxidation of ammonia at platinum nanoparticles supported on modified mesoporous carbons (MPC) with three different pore diameters (64, 100, and 137 Å) was studied via the chronoamperometric technique in a half-cell. The catalysts were prepared by a H2 reductive process of PtCl\(_{6}^{\mathrm {4-}}\) in presence of the mesoporous carbon support materials. A microgravity environment was obtained with an average gravity of less than 0.02 g created aboard an airplane performing parabolic maneuvers. Results show the chronoamperommetry of the ammonia oxidation reaction in 1.0 M NH4OH at 0.60 V vs. RHE under microgravity conditions. The current density, in all three catalysts, decreased while in microgravity conditions when compared to ground based experiments. Under microgravity, all three catalysts yielded a decrease in ammonia oxidation reaction current density between 25 to 63% versus terrestrial experimental results, in time scales between 1 and 15 s. The Pt catalyst prepared with mesoporous carbon of 137 Å porous showed the smallest changes, between 25 to 48%. Nanostructuring catalyst materials have an effect on the level of current density decrease under microgravity conditions.  相似文献   
992.
Specialized hardware for neural networks requires materials with tunable symmetry, retention, and speed at low power consumption. The study proposes lithium titanates, originally developed as Li-ion battery anode materials, as promising candidates for memristive-based neuromorphic computing hardware. By using ex- and in operando spectroscopy to monitor the lithium filling and emptying of structural positions during electrochemical measurements, the study also investigates the controlled formation of a metallic phase (Li7Ti5O12) percolating through an insulating medium (Li4Ti5O12) with no volume changes under voltage bias, thereby controlling the spatially averaged conductivity of the film device. A theoretical model to explain the observed hysteretic switching behavior based on electrochemical nonequilibrium thermodynamics is presented, in which the metal-insulator transition results from electrically driven phase separation of Li4Ti5O12 and Li7Ti5O12. Ability of highly lithiated phase of Li7Ti5O12 for Deep Neural Network applications is reported, given the large retentions and symmetry, and opportunity for the low lithiated phase of Li4Ti5O12 toward Spiking Neural Network applications, due to the shorter retention and large resistance changes. The findings pave the way for lithium oxides to enable thin-film memristive devices with adjustable symmetry and retention.  相似文献   
993.
The thermally induced spin-crossover (SCO) phenomenon in transition metal complexes is an entropy-driven process, which has been extensively studied through calorimetric methods. Yet, the excess heat capacity associated with the molecular spin-state switching has never been explored for practical applications. Herein, the thermal damping effect of an SCO film is experimentally assessed by monitoring the transient heating response of SCO-coated metallic microwires, Joule-heated by current pulses. A damping of the wire temperature, up to 10%, is evidenced on a time scale of tens of microseconds due to the spin-state switching of the molecular film. Fast heat-charging dynamics and negligible fatigability are demonstrated, which, together with the solid-solid nature of the spin transition, appear as promising features for achieving thermal energy management applications in functional devices.  相似文献   
994.
Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as cellulose in plants. Because of their inherent degradability and biocompatibility characteristics, sugars are compelling materials for transient devices. Here, an additive manufacturing approach for the production of magnetic sugar-based composites is introduced. First, it is shown that sugar-based 3D architectures can be 3D printed by selective laser sintering. This method enables not only the caramelization chemistry but also the mechanical properties of the sugar architectures to be adjusted by varying the laser energy. It is also demonstrated that mixtures of sugar and magnetic particles can be processed as 3D composites. As a proof of concept, a sugar-based millimeter-scale helical swimmer, which is capable of corkscrew motion in a solution with a viscosity comparable to those of biological fluids, is fabricated. The millirobot quickly dissolves in water, while being manipulated through magnetic fields. The present fabrication method can pave the way to a new generation of transient sugar-based small-scale robots for minimally invasive procedures. Due to their rapid dissolution, sugars can be used as an intermediate step for transporting swarms of particles to specific target locations.  相似文献   
995.

To prepare an efficient supercapacitor, an activated carbon from agave wastes was prepared and their electrochemical performance was evaluated as a novel electrode for supercapacitor. The carbon was prepared by two thermal pyrolysis processes under nitrogen atmosphere. The first pyrolysis was achieved at 500 °C until the charring of the bagasse; in the second pyrolysis step, the char was impregnated with different mass ratios of KOH (1:2–1:4) and thermally treated at 800 or 900 °C, for 1 h under N2 flow. The textural analysis showed that the activated carbon had a specific surface area of 1462 m2 g?1 and depicted a type I isotherm (IUPAC) characteristic of a microporous carbon. Raman spectroscopy and XRD measurements confirm that the activated carbon contains a small graphitization degree and a disordered structure. The electrochemical study of the symmetric carbon supercapacitor was carried out in 1 M Li2SO4 solution as the electrolyte. The electrochemical performance of the coin cell supercapacitor was evaluated under an accelerated aging floating test consisting of potentiostatic steps at different voltages (1.5, 1.6 and 1.8 V) for 10 h followed by galvanostatic charge/discharge sequences, and the overall procedure summarized a floating time up to 200 h. The highest capacitance was observed at a floating voltage of 1.5 V, with a large initial specific capacitance of 297 F g?1.

  相似文献   
996.
An automated multi-material approach that integrates multi-objective Topology Optimization (TO) and multi-objective shape optimization is presented. A new ant colony optimization algorithm is presented and applied to solving the TO problem, estimating a trade-off set of initial topologies or distributions of material. The solutions found usually present irregular boundaries, which are not desirable in applications. Thus, shape parameterization of the internal boundaries of the design region, and subsequent shape optimization, is performed to improve the quality of the estimated Pareto-optimal solutions. The selection of solutions for shape optimization is done by using the PROMETHEE II decision-making method. The parameterization process involves identifying the boundaries of different materials and describing these boundaries by non-uniform rational B-spline curves. The proposed approach is applied to the optimization of a C-core magnetic actuator, with two objectives: the maximization of the attractive force on the armature and the minimization of the volume of permanent magnet material.  相似文献   
997.
Journal of Materials Science: Materials in Electronics - This study reports the electrical properties of Nd-doped cerium oxide (CeO2) films synthesized by microwave assisted hydrothermal using a...  相似文献   
998.
Today in reliability analysis, the most used distribution to describe the behavior of devices is the Weibull distribution. Nonetheless, the Weibull distribution does not provide an excellent fit to lifetime datasets that exhibit bathtub shaped or upside‐down bathtub shaped (unimodal) failure rates, which are often encountered in the performance of products such as electronic devices (ED). In this paper, a reliability model based on the exponentiated Weibull distribution and the inverse power law model is proposed, this new model provides a better approach to model the performance and fit of the lifetimes of electronic devices. A case study based on the lifetime of a surface‐mounted electrolytic capacitor is presented in this paper. Besides, it was found that the estimation of the proposed model differs from the Weibull classical model and that affects the mean time to failure (MTTF) of the capacitor under analysis.  相似文献   
999.
Structural and Multidisciplinary Optimization - The performance of fluid devices, such as channels, valves, nozzles, and pumps, may be improved by designing them through the topology optimization...  相似文献   
1000.
International Journal of Control, Automation and Systems - This paper focuses on the design and implementation of an aperiodic control of nonholonomic robots tracking nonlinear trajectories. The...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号