首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15102篇
  免费   1252篇
  国内免费   593篇
电工技术   844篇
技术理论   2篇
综合类   841篇
化学工业   2663篇
金属工艺   923篇
机械仪表   956篇
建筑科学   1127篇
矿业工程   514篇
能源动力   434篇
轻工业   874篇
水利工程   236篇
石油天然气   1188篇
武器工业   102篇
无线电   1664篇
一般工业技术   1877篇
冶金工业   834篇
原子能技术   147篇
自动化技术   1721篇
  2024年   78篇
  2023年   298篇
  2022年   470篇
  2021年   653篇
  2020年   518篇
  2019年   445篇
  2018年   511篇
  2017年   512篇
  2016年   438篇
  2015年   594篇
  2014年   765篇
  2013年   823篇
  2012年   927篇
  2011年   989篇
  2010年   870篇
  2009年   847篇
  2008年   869篇
  2007年   740篇
  2006年   775篇
  2005年   643篇
  2004年   521篇
  2003年   435篇
  2002年   425篇
  2001年   360篇
  2000年   338篇
  1999年   398篇
  1998年   293篇
  1997年   277篇
  1996年   239篇
  1995年   212篇
  1994年   171篇
  1993年   119篇
  1992年   103篇
  1991年   65篇
  1990年   62篇
  1989年   45篇
  1988年   28篇
  1987年   25篇
  1986年   15篇
  1985年   12篇
  1984年   13篇
  1983年   5篇
  1982年   5篇
  1981年   7篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
Photoredox catalysis is a green solution for organics transformation and CO2 conversion into valuable fuels, meeting the challenges of sustainable energy and environmental concerns. However, the regulation of single-atomic active sites in organic framework not only influences the photoredox performance, but also limits the understanding of the relationship for photocatalytic selective organic conversion with CO2 valorization into one reaction system. As a prototype, different single-atomic metal (M) sites (M2+ = Fe2+, Co2+, Ni2+, Cu2+, and Zn2+) in hydrogen-bonded organic frameworks (M-HOF) backbone with bridging structure of metal-nitrogen are constructed by a typical “two-in-one” strategy for superior photocatalytic C N coupling reactions integrated with CO2 valorization. Remarkably, Zn-HOF achieves 100% conversion of benzylamine oxidative coupling reactions, 91% selectivity of N-benzylidenebenzylamine and CO2 conversion in one photoredox cycle. From X-ray absorption fine structure analysis and density functional theory calculations, the superior photocatalytic performance is attributed to synergic effect of atomically dispersed metal sites and HOF host, decreasing the reaction energy barriers, enhancing CO2 adsorption and forming benzylcarbamic acid intermediate to promote the redox recycle. This work not only affords the rational design strategy of single-atom active sites in functional HOF, but also facilitates the fundamental insights upon the mechanism of versatile photoredox coupling reaction systems.  相似文献   
102.
Despite the outstanding power conversion efficiency (PCE) of perovskite solar cells (PSCs) achieved over the years, unsatisfactory stability and lead toxicity remain obstacles that limit their competitiveness and large-scale practical deployment. In this study, in situ polymerizing internal encapsulation (IPIE) is developed as a holistic approach to overcome these challenges. The uniform polymer internal package layer constructed by thermally triggered cross-linkable monomers not only solidifies the ionic perovskite crystalline by strong electron-withdrawing/donating chemical sites, but also acts as a water penetration and ion migration barrier to prolong shelf life under harsh environments. The optimized MAPbI3 and FAPbI3 devices with IPIE treatment yield impressive efficiencies of 22.29% and 24.12%, respectively, accompanied by remarkably enhanced environmental and mechanical stabilities. In addition, toxic water-soluble lead leakage is minimized by the synergetic effect of the physical encapsulation wall and chemical chelation conferred by the IPIE. Hence, this strategy provides a feasible route for preparing efficient, stable, and eco-friendly PSCs.  相似文献   
103.
Smart textiles with good mechanical adaptability play an important role in personal protection, health monitoring, and aerospace applications. However, most of the reported thermally responsive polymers has long response time and poor processability, comfort, and wearability. Skin-core structures of thermally responsive fibers with multiple commercial fiber cores and temperature-responsive hydrogel skins are designed and fabricated, which exhibit rapid mechanical adaptability, good thermohardening, and thermal insulation. This universal method enables tight bonding between various commercial fiber cores and hydrogel skins via specific covalently anchored networks. At room temperature, prepared fibers show softness, flexibility, and skin compatibility similar to those of ordinary fibers. As temperature rises, smart fibers become hard, rigid, and self-supporting. The modulus of hydrogel skin increases from 304% to 30883%, showing good mechanoadaptability and impact resistance owing to the synergy between hydrophobic interactions and ionic bonding. Moreover, this synergistic effect leads to an increase in heat absorption, and fibers exhibit good thermal insulation, which reduces the contact temperature of the body surface by ≈25 °C under the external temperature of 95 °C, effectively preventing thermal burns. Notably, the active mechanoadaptability of these smart fibers using conductive fibers as cores is demonstrated. This study provides feasibility for fabricating environmentally adaptive intelligent textiles.  相似文献   
104.
Polymer blends based solid polymer electrolytes (SPEs), combining the advantages of multiple polymers, are promising for the utilization of 5 V-class cathodes (e.g., LiCoMnO4 (LCMO)) with enhanced safety. However, severe macro-phase separation with defects and voids in polymer blends restrict the electrochemical stability and ionic migration of SPEs. Herein, inorganic compatibilizer polyacrylonitrile grafted MXene (MXene-g-PAN) is exploited to improve the miscibility of the poly(vinylidene fluoride-co-hexafluoropropylene) (PVHF)/PAN blends and suppress the consolidation of phase particles. The resulting SPE exhibits a high anodic stability with an ionic conductivity of 2.17 × 10−4 S cm−1, enabling a stable and reversible Li platting/stripping (over 2500 h). The fabricated solid Li‖LCMO cell delivers a 5.1 V discharge voltage with a decent capacity (131 mAh g−1) and cycling performance. Subsequently, the solid all-in-one graphite‖LCMO battery is also constructed to extend the application of MXene based SPEs in flexible batteries. Benefiting from the interface-less design, outstanding mechanical flexibility and stability is achieved in the battery, which can endure various deformations with a low-capacity loss (< ≈10%). This study signifies a significant development on solid flexible lithium ion batteries with enhanced performance, stability, and reliability by investigating the miscibility of polymer blends, benefiting for the design of high-performance SPEs.  相似文献   
105.
Designing hydrogen evolution reaction (HER) electrocatalysts for facilitating its sluggish adsorption kinetics is crucial in generating green hydrogen via sustainable water electrolysis. Herein, a high-performance ultra-low Ruthenium (Ru) catalyst is developed consisting of atomically-layered Ru nanoclusters with adjacent single Ru sites, which executs a bridging-Ru-H activation strategy to kinetically accelerate the HER elementary steps. Owing to its optimal electronic structure and unique adsorption configuration, the hybrid Ru catalyst simultaneously displayed a drastically reduced overpotential of 16 mV at 10 mA cm−2 as well as a low Tafel slope of 35.2 mV dec−1 in alkaline electrolyte. When further coupled with a commercial IrO2 anode catalyst, the ensembled anion-exchange membrane water electrolyzer achievs a current density of 1.0 A cm−2 at a voltage of only 1.70 Vcell. In situ spectroscopic analysis verified that Ru single atom and atomically-layered Ru nanoclusters in the hybrid materials play a critical role in facilitating water dissociation and weakening *H adsorption, respectively. Theoretical calculations further elucidate the underlaying mechanism, suggesting that the dissociated proton at the single atom Ru site orients itself adjacently with Ru nanoclusters in a bridged structure through targeted charge transfer, thus promoting Volmer-Heyrovsky dynamics and boosting the HER activity.  相似文献   
106.
Aqueous ammonium ion hybrid supercapacitor (A-HSC) combines the charge storage mechanisms of surface adsorption and bulk intercalation, making it a low-cost, safe, and sustainable energy storage candidate. However, its development is hindered by the low capacity and unclear charge storage fundamentals. Here, the strategy of phosphate ion-assisted surface functionalization is used to increase the ammonium ion storage capacity of an α-MoO3 electrode. Moreover, the understanding of charge storage mechanisms via structural characterization, electrochemical analysis, and theoretical calculation is advanced. It is shown that NH4+ intercalation into layered α-MoO3 is not dominant in the A-HSC system; rather, the charge storage mainly depends on the adsorption energy of surface “O” to NH4+. It is further revealed that the hydrogen bond chemistry of the coordination between “O” of surface phosphate ion and NH4+ is the reason for the capacity increase of MoO3. This study not only advances the basic understanding of rechargeable aqueous A-HSC but also demonstrates the promising future of surface engineering strategies for energy storage devices.  相似文献   
107.
为缩短高速模数转换器(ADC)中高位(MSB)电容建立时间以及减小功耗,提出了一种基于分段式电容阵列的改进型逐次逼近型(SAR)ADC结构,通过翻转小电容阵列代替翻转大电容阵列以产生高位数字码,并利用180 nm CMOS工艺实现和验证了此ADC结构。该结构一方面可以缩短产生高位数码字过程中的转换时间,提高量化速度;另一方面其可以延长大电容的稳定时间,减小参考电压的负载。通过缩小比较器输入对管的面积以减小寄生电容带来的误差,提升高位数字码的准确度。同时,利用一次性校准技术减小比较器的失配电压。最终,采用180 nm CMOS工艺实现该10 bit SAR ADC,以验证该改进型结构。结果表明,在1.8 V电源电压、780μW功耗、有电路噪声和电容失配情况下,该改进型SAR ADC得到了58.0 dB的信噪失真比(SNDR)。  相似文献   
108.
The Journal of Supercomputing - In order to analyse the application value of U-Net neural network in reconstruction and diagnosis of computed tomography (CT) scanning image of lung cancer and...  相似文献   
109.
Chen  Yun  Li  Huaizhong  Hou  Liang  Bu  Xiangjian  Ye  Shaogan  Chen  Ding 《Journal of Intelligent Manufacturing》2022,33(1):121-135
Journal of Intelligent Manufacturing - Chatter in machining results in poor workpiece surface quality and short tool life. An accurate and reliable chatter detection method is needed before its...  相似文献   
110.
Lung cancer is one of the deadliest diseases in the world. Non‐small cell lung cancer (NSCLC) is the most common and dangerous type of lung cancer. Despite the fact that NSCLC is preventable and curable for some cases if diagnosed at early stages, the vast majority of patients are diagnosed very late. Furthermore, NSCLC usually recurs sometime after treatment. Therefore, it is of paramount importance to predict NSCLC recurrence, so that specific and suitable treatments can be sought. Nonetheless, conventional methods of predicting cancer recurrence rely solely on histopathology data and predictions are not reliable in many cases. The microarray gene expression (GE) technology provides a promising and reliable way to predict NSCLC recurrence by analysing the GE of sample cells. This study proposes a new model from GE programming to use microarray datasets for NSCLC recurrence prediction. To this end, the authors also propose a hybrid method to rank and select relevant prognostic genes that are related to NSCLC recurrence prediction. The proposed model was evaluated on real NSCLC microarray datasets and compared with other representational models. The results demonstrated the effectiveness of the proposed model.Inspec keywords: lung, cancer, lab‐on‐a‐chip, genetics, patient diagnosisOther keywords: NSCLC recurrence prediction, microarray data, GE programming, nonsmall cell lung cancer, cancer recurrence, histopathology data, microarray gene expression, prognostic genes  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号