首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205666篇
  免费   15900篇
  国内免费   7806篇
电工技术   11287篇
技术理论   14篇
综合类   11323篇
化学工业   35455篇
金属工艺   10653篇
机械仪表   12142篇
建筑科学   16431篇
矿业工程   4929篇
能源动力   5925篇
轻工业   12916篇
水利工程   3246篇
石油天然气   11174篇
武器工业   1361篇
无线电   25522篇
一般工业技术   26671篇
冶金工业   10750篇
原子能技术   2171篇
自动化技术   27402篇
  2024年   632篇
  2023年   3114篇
  2022年   5152篇
  2021年   7857篇
  2020年   5746篇
  2019年   4949篇
  2018年   5396篇
  2017年   6152篇
  2016年   5678篇
  2015年   7365篇
  2014年   9620篇
  2013年   12382篇
  2012年   12430篇
  2011年   14052篇
  2010年   11773篇
  2009年   11631篇
  2008年   11020篇
  2007年   10620篇
  2006年   11007篇
  2005年   9717篇
  2004年   6655篇
  2003年   5857篇
  2002年   5309篇
  2001年   4787篇
  2000年   4930篇
  1999年   5675篇
  1998年   5312篇
  1997年   4346篇
  1996年   3954篇
  1995年   3316篇
  1994年   2769篇
  1993年   2176篇
  1992年   1687篇
  1991年   1261篇
  1990年   1004篇
  1989年   866篇
  1988年   669篇
  1987年   483篇
  1986年   372篇
  1985年   319篇
  1984年   196篇
  1983年   181篇
  1982年   155篇
  1981年   139篇
  1980年   130篇
  1979年   97篇
  1978年   63篇
  1977年   63篇
  1976年   77篇
  1975年   38篇
排序方式: 共有10000条查询结果,搜索用时 625 毫秒
111.
Bulk and surface properties of proton stability and transportation in Y and Nd co-doped BaCeO3 (BCYN), especially the effect of Nd segregation, were investigated by first-principles calculations. Since the structure of doped BaCeO3 at the operating temperature of proton-conducting has been unclear for a long time, we have summarized the latest experimental results and calculated the structure of the asymmetric BCYN for the first time. The results show that compared with Y, Nd doping promotes oxygen vacancy formation, however reduces proton stability. Our calculation can also provide a possible explanation for the formation of space charge layer at the grain boundary of doped BaCeO3 in experiment. Unlike the stable Y in BCYN, Nd is calculated to be easily segregated, which can facilitate both proton hydration and proton transportation near the surface. Moreover, Nd segregation at the grain boundary is predicted to be beneficial for proton transportation between grains.  相似文献   
112.
113.
Rare-earth ions doped Ca0.9R0.1CeNbMoO8 (R = Y, Sm, Nd, La) ceramics have been successfully prepared by solid-state method, and their modifications to the microstructure and electrical properties are also investigated. The rare-earth ions doped ceramics exhibit the scheelite structure. With the increase in the radius of rare-earth ions, the lattice distortion and bond interaction will be enhanced, and the consistency of grain size will be reduced. The ceramics exhibit negative temperature coefficient (NTC) thermistor characteristics in the temperature range of 473 K-1273 K, and the activation energy decreases with the increase of the radius of rare-earth ions. Rare-earth ions doping can increase the content of Ce3+ ions and promote the conductivity of ceramics. Except for Sm3+-doped ceramics, the high-temperature aging rate of other ceramics is less than 2%. The existence of some metastable Sm2+ ions in Sm3+-doped ceramics not only increases the activation energy, but also reduces the high-temperature stability of the ceramics.  相似文献   
114.
Shale gas, as an important unconventional resource, has drawn global attention. It is mainly composed of adsorption gas and free gas. Adsorption gas content could play an important guiding role on both the selection of favorable perspective area and the exploration and exploitation of shale gas resources. In order to accurately measure adsorption gas content, a new approach was established to predict the adsorption isotherm of methane on shale. Based on the simplified local-density (SLD) method, both the adsorption isotherms of illite, illite/smectite mixed-layer, cholorite and type III kerogen and the total shale rock could be well fitted. The fitting results show good coincidences with the true experimental test data, which proves the method is reasonable and dependable and the prediction results are effective and credible. In addition, the good simulation results show that the SLD parameters can reflect the pore structure characteristics and corresponding adsorption characteristics of the shale samples, which can be used for the quantitative characterization of shale pore system.  相似文献   
115.
Micro Aerial Vehicles (MAVs) have great potentials to be applied for indoor search and rescue missions. In this paper, we propose a modular lightweight design of an autonomous MAV with integrated hardware and software. The MAV is equipped with the 2D laser scanner, camera, mission computer and flight controller, running all the computation onboard in real time. The onboard perception system includes a laser‐based SLAM module and a custom‐designed visual detection module. A dual Kalman filter design provides robust state estimation by multiple sensor fusion. Specifically, the fusion module provides robust altitude measurement in the circumstance of surface changing. In addition, indoor‐outdoor transition is explicitly handled by the fusion module. In order to efficiently navigate through obstacles and adapt to multiple tasks, a task tree‐based mission planning method is seamlessly integrated with path planning and control modules. The MAV is capable of searching and rescuing victims from unknown indoor environments effectively. It was validated by our award‐winning performance at the 2017 International Micro Air Vehicle Competition (IMAV 2017), held in Toulouse, France. The performance video is available on https://youtu.be/8H19ppS_VXM .  相似文献   
116.
The effect of charge on the dihydrogen storage capacity of Sc2–C6H6 has been investigated at B3LYP-D3/6-311G(d,p) level. The neutral system Sc2–C6H6 can store 8H2 with gravimetric density of 8.76 wt %, and one H2 dissociates and bonds atomically on the scandium atom. The adsorption of 8H2 on Sc2–C6H6 is energetically favorable below 155 K. The atom-centered density matrix propagation (ADMP) molecular dynamics simulations show that Sc2–C6H6 can adsorb 3H2 within 1000 fs at 300K. Compared with Sc2–C6H6, the charged systems can adsorb more hydrogen molecules with higher gravimetric density, and all the H2 are adsorbed in the molecular form. The gravimetric densities of Sc2–C6H6+ and Sc2–C6H62+ are 9.75 and 10.71 wt%. Moreover, the maximum adsorption of charged systems are favorable in wider temperature range. Most importantly, the ADMP-MD simulations indicate that Sc2–C6H62+ can adsorb 6 hydrogen molecules within 1000 fs at 300K. It can be found that the gravimetric density (6.72 wt%) of Sc2–C6H62+ still exceeds the target of US Department of Energy (DOE) under ambient conditions.  相似文献   
117.
A cross-sectional study was conducted to investigate the impact of solid fuel use for heating and cooking on blood pressure (BP) and hypertension, using data from the China Health and Retirement Longitudinal Study (CHARLS). The primary fuels used for indoor heating and cooking were collected by questionnaires, respectively. Hypertension was defined based on self-report of physician's diagnosis, and/or measured BP, and/or anti-hypertensive medication use. Multivariate logistic regression models were constructed to assess the associations. Among 10 450 eligible participants, 68.2% and 57.2% used indoor solid fuel for heating and cooking, respectively. Compared with none/clean fuel users, solid fuel for heating was associated with elevated BP (adjusted β: 2.02, 95% CI: 1.04–3.01 for systolic BP; adjusted β: 1.36, 95% CI: 0.78–1.94 for diastolic BP) and increased risk of hypertension (adjusted odds ratio: 1.15, 95% CI: 1.03–1.29). The impact of indoor solid fuel for heating on BP was more evident in rural and north residents, and hypertensive patients. We did not detect any significant associations between solid fuel use for cooking and BP/hypertension. Indoor solid fuel use is prevalent in China, especially in the rural areas. Its negative impact on BP suggested that modernization of household fuel use may help to reduce the burden of hypertension in China.  相似文献   
118.
Process object is the instance of process. Vertexes and edges are in the graph of process object. There are different types of the object itself and the associations between object. For the large-scale data, there are many changes reflected. Recently, how to find appropriate real-time data for process object becomes a hot research topic. Data sampling is a kind of finding c hanges o f p rocess o bjects. There i s r equirements f or s ampling to be adaptive to underlying distribution of data stream. In this paper, we have proposed a adaptive data sampling mechanism to find a ppropriate d ata t o m odeling. F irst o f all, we use concept drift to make the partition of the life cycle of process object. Then, entity community detection is proposed to find changes. Finally, we propose stream-based real-time optimization of data sampling. Contributions of this paper are concept drift, community detection, and stream-based real-time computing. Experiments show the effectiveness and feasibility of our proposed adaptive data sampling mechanism for process object.  相似文献   
119.
How to improve the sensitivity of the temperature-sensing luminescent materials is one of the most important objects currently. In this work, to obtain high sensitivity and learn the corresponding mechanism, the rare earth (RE) ions doped Y4.67Si3O13 (YS) phosphors were developed by solid-state reaction. The phase purity, structure, morphology and luminescence characteristics were evaluated by XRD, TEM, emission spectra, etc. The change of the optical bandgaps between the host and RE-doped phosphors was found, agreeing with the calculation results based on density-functional theory. The temperature-dependence of the upconversion (UC) luminescence revealed that a linear relationship exists between the fluorescence intensity ratio of Ho3+ and temperature. The theoretical resolution was evaluated. High absolute (0.083 K−1) and relative (3.53% K−1 at 293 K) sensitivities have been gained in the YS:1%Ho3+, 10%Yb3+. The effect of the Yb3+ doping concentration and pump power on the sensitivities was discussed. The pump-power–dependence of the UC luminescence indicated the main mechanism for high sensitivities in the YS:1%Ho3+, 10%Yb3+. Moreover, the decay-lifetime based temperature sensing was also evaluated. The above results imply that the present phosphors could be promising candidates for temperature sensors, and the proposed strategies are instructive in exploring other new temperature sensing luminescent materials.  相似文献   
120.
Flow field structure can largely determine the output performance of Polymer electrolyte membrane fuel cell. Excellent channel configuration accelerates electrochemical reactions in the catalytic layer, effectively avoiding flooding on the cathode side. In present study, a three-dimensional, multi-phase model of PEMFC with a 3D wave flow channel is established. CFD method is applied to optimize the geometry constructions of three-dimensional wave flow channels. The results reveal that 3D wave flow channel is overall better than straight channel in promoting reactant gases transport, removing liquid water accumulated in microporous layer and avoiding thermal stress concentration in the membrane. Moreover, results show the optimal flow channel minimum depth and wave length of the 3D wave flow channel are 0.45 mm and 2 mm, respectively. Due to the periodic geometric characteristics of the wave channel, the convective mass transfer is introduced, improving gas flow rate in through-plane direction. Furthermore, when the cell output voltage is 0.4 V, the current density in the novel channel is 23.8% higher than that of conventional channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号