Uses a Markov process to model a real-time expert system architecture characterized by message passing and event-driven scheduling. The model is applied to the performance evaluation of rule grouping for real-time expert systems running on this architecture. An optimizing algorithm based on Kernighan-Lin heuristic graph partitioning for the real-time architecture is developed and a demonstration system based on the model and algorithm has been developed and tested on a portion of the advanced GPS receiver (AGR) and manned manoeuvring unit (MMU) knowledge bases 相似文献
This paper investigates the relationship between the piecewise linear fuzzy controller (PLFC), in which the membership functions for fuzzy variables and the associated inference rules are all in piecewise linear forms, and a Gaussian potential function network based controller (GPFNC), in which the network output is a weighted summation of hidden responses from a series of Gaussian potential function units (GPFU's). Systematic procedures are proposed for transformation from a PLFC to its GPFNC counterpart, and vice versa. Based on these transformation principles, a series of systematic and feasible steps is presented for the design of an optimized PLFC (PLFC*) by using neural network techniques. In the design procedures, the simplified PLFC is used as the initial controller structure, then a GPFNC, which gives the approximate control response to the initially given PLFC, is found for further optimization. A neutralization process is used to demonstrate the feasibility and the potential applicability of these intelligent controllers on the regulation of highly nonlinear chemical processes 相似文献
A CEC-funded project has been performed to tackle the problem of producing an advanced Life Monitoring System (LMS) which would calculate the creep and fatigue damage experienced by high temperature pipework components. Four areas were identified where existing Life Monitoring System technology could be improved:
1. 1. the inclusion of creep relaxation
2. 2. the inclusion of external loads on components
3. 3. a more accurate method of calculating thermal stresses due to temperature transients
4. 4. the inclusion of high cycle fatigue terms.
The creep relaxation problem was solved using stress reduction factors in an analytical in-elastic stress calculation. The stress reduction factors were produced for a number of common geometries and materials by means of non-linear finite element analysis. External loads were catered for by producing influence coefficients from in-elastic analysis of the particular piping system and using them to calculate bending moments at critical positions on the pipework from load and displacement measurements made at the convenient points at the pipework. The thermal stress problem was solved by producing a completely new solution based on Green's Function and Fast Fourier transforms. This allowed the thermal stress in a complex component to be calculated from simple non-intrusive thermocouple measurements made on the outside of the component. The high-cycle fatigue problem was dealt with precalculating the fatigue damage associated with standard transients and adding this damage to cumulative total when a transient occurred.
The site testing provided good practical experience and showed up problems which would not otherwise have been detected. 相似文献
Among the photocathodes used for particle identification based on the Cherenkov Ring Imaging technique, the TMAE molecule is still the best in terms of quantum efficiency. Despite the fact that TMAE gaseous photocathodes have already been used in a number of large experiments, one still seeks answers to many detailed questions. We present a systematic study of gaseous photocathodes based on TMAE mixed with helium, hydrocarbon and CF4-based gases at normal pressure. The study includes a measurement of the electron drift velocity, gas quenching properties, single electron pulse height spectra and anode wire aging. The paper makes recommendations for carrier gas mixtures to obtain the best quenching, and suggests how to manage TMAE wire aging. This study was motivated by a specific particle identification detector proposal, the Fast Drift CRID proposed for the B-factory at SLAC. 相似文献
A distributed problem solving system can be characterized as a group of individual cooperating agents running to solve common problems. As dynamic application domains continue to grow in scale and complexity, it becomes more difficult to control the purposeful behavior of agents, especially when unexpected events may occur. This article presents an information and knowledge exchange framework to support distributed problem solving. From the application viewpoint the article concentrates on the stock trading domain; however, many presented solutions can be extended to other dynamic domains. It addresses two important issues: how individual agents should be interconnected so that their resources are efficiently used and their goals accomplished effectively; and how information and knowledge transfer should take place among the agents to allow them to respond successfully to user requests and unexpected external situations. The article introduces an architecture, the MASST system architecture, which supports dynamic information and knowledge exchange among the cooperating agents. The architecture uses a dynamic blackboard as an interagent communication paradigm to facilitate factual data, business rule, and command exchange between cooperating MASST agents. The critical components of the MASST architecture have been implemented and tested in the stock trading domain, and have proven to be a viable solution for distributed problem solving based on cooperating agents 相似文献