首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6467篇
  免费   185篇
  国内免费   10篇
电工技术   83篇
综合类   10篇
化学工业   851篇
金属工艺   95篇
机械仪表   133篇
建筑科学   350篇
矿业工程   16篇
能源动力   171篇
轻工业   658篇
水利工程   55篇
石油天然气   19篇
无线电   517篇
一般工业技术   1048篇
冶金工业   1426篇
原子能技术   44篇
自动化技术   1186篇
  2022年   35篇
  2021年   81篇
  2020年   59篇
  2019年   80篇
  2018年   123篇
  2017年   146篇
  2016年   133篇
  2015年   115篇
  2014年   133篇
  2013年   368篇
  2012年   280篇
  2011年   379篇
  2010年   279篇
  2009年   249篇
  2008年   351篇
  2007年   300篇
  2006年   271篇
  2005年   219篇
  2004年   178篇
  2003年   172篇
  2002年   181篇
  2001年   129篇
  2000年   123篇
  1999年   138篇
  1998年   339篇
  1997年   231篇
  1996年   193篇
  1995年   128篇
  1994年   122篇
  1993年   89篇
  1992年   67篇
  1991年   56篇
  1990年   54篇
  1989年   68篇
  1988年   52篇
  1987年   51篇
  1986年   35篇
  1985年   68篇
  1984年   57篇
  1983年   31篇
  1982年   32篇
  1981年   33篇
  1979年   48篇
  1978年   44篇
  1977年   34篇
  1976年   57篇
  1975年   27篇
  1974年   26篇
  1973年   25篇
  1972年   25篇
排序方式: 共有6662条查询结果,搜索用时 31 毫秒
81.
The electronic properties of semiconductors are highly dependent on carrier scattering mechanisms determined by crystalline structure, band structure, and defects in the material. Experimental characteristics of lattice vibrational modes and free carrier absorption in single-crystal ZnO samples obtained from different sources are presented in this work to provide a further understanding of carrier scattering processes pertaining to electronic properties. Infrared absorption measurements indicate strong absorption peaks due to a combination of optical and nonpolar phonon modes in the 9–13 μm spectral region. The Raman spectra obtained for these samples similarly reveal the presence of these phonon modes. Infrared absorption measurements also demonstrate free carrier absorption in the 3–9 μm spectral region for higher conductivity samples, where a λm dependence is observed with m=2.7–3, indicating both longitudinal optical phonon scattering and ionized impurity scattering. From these results, we show that infrared absorption can be used as a routine nondestructive technique to determine the material characteristics and quality of bulk ZnO.  相似文献   
82.
The nuclear spin quantum computer proposed by Kane [Nature 393 (1998) 133] exploits as a qubit array 31P dopants embedded within a silicon matrix. Single-qubit operations are controlled by the application of electrostatic potentials via a set of metallic ‘A’ gates, situated above the donors, on the silicon surface, that tune the resonance frequency of individual nuclear spins, and a globally applied RF magnetic field that flips spins at resonance. Coupling between qubits is controlled by the application of potentials via a set of ‘J’ gates, between the donors, that induce an electron-mediated coupling between nuclear spins. We report the results of the study of the electric field and potential profiles arising within the Kane device from typical gate operations. The extent to which a single nuclear spin can be tuned independently of its neighbours, by operation of an associated A-gate, is examined and key design parameters in the Kane architecture are addressed. Implications for current fabrication strategies involving the implantation of 31P atoms are discussed. Solution of the Poisson equation has been carried out by simulation using a TCAD modelling package (Integrated Systems Engineering AG).  相似文献   
83.
Electrochemically driven carbon dioxide (CO2) conversion is an emerging research field due to the global warming and energy crisis. Carbon monoxide (CO) is one key product during electroreduction of CO2; however, this reduction process suffers from tardy kinetics due to low local concentration of CO2 on a catalyst's surface and low density of active sites. Herein, presented is a combination of experimental and theoretical validation of a Ni porphyrin‐based covalent triazine framework (NiPor‐CTF) with atomically dispersed NiN4 centers as an efficient electrocatalyst for CO2 reduction reaction (CO2RR). The high density and atomically distributed NiN4 centers are confirmed by aberration‐corrected high‐angle annular dark field scanning transmission electron microscopy and extended X‐ray absorption fine structure. As a result, NiPor‐CTF exhibits high selectivity toward CO2RR with a Faradaic efficiency of >90% over the range from ?0.6 to ?0.9 V for CO conversion and achieves a maximum Faradaic efficiency of 97% at ?0.9 V with a high current density of 52.9 mA cm?2, as well as good long‐term stability. Further calculation by the density functional theory method reveals that the kinetic energy barriers decreasing for *CO2 transition to *COOH on NiN4 active sites boosts the performance.  相似文献   
84.
Undesired photoelectronic dormancy through active species decay is adverse to photoactivity enhancement. An insufficient extrinsic driving force leads to ultrafast deep charge trapping and photoactive species depopulation in carbon nitride (g-C3N4). Excitation of shallow trapping in g-C3N4 with long-lived excited states opens up the possibility of pursuing high-efficiency photocatalysis. Herein, a near-field-assisted model is constructed consisting of an In2O3-cube/g-C3N4 heterojunction associated with ultrafast photodynamic coupling. This In2O3-cube-induced near-field assistance system provides catalytic “hot areas”, efficiently enhances the lifetimes of excited states and shallow trapping in g-C3N4 and this favors an increased active species density. Optical simulations combined with time-resolved transient absorption spectroscopy shows there is a built-in charge transfer and the active species lifetimes are longer in the In2O3-cube/g-C3N4 hybrid. Besides these properties, the estimated overpotential and interfacial kinetics of the In2O3-cube/g-C3N4 hybrid co-promotes the liquid phase reaction and also helps in boosting the photocatalytic performance. The photocatalytic results exhibit a tremendous improvement (34-fold) for visible-light-driven hydrogen production. Near-field-assisted long-lived active species and the influences of trap states is a novel finding for enhancing (g-C3N4)-based photocatalytic performance.  相似文献   
85.
The choice of an adequate electrolyte is a fundamental aspect in polymer light-emitting electrochemical cells (PLECs) as it provides the in situ electrochemical doping and influences the performance of these devices. In this study, a hyperbranched polymer (Hybrane DEO750 8500) blended with a Li salt is used as a novel electrolyte in state-of-the-art Super Yellow (a polyphenylenevinylene) based LECs. Due to the desirable properties of the hyperbranched polymer and the homogeneous and smooth films that it forms with the emitting polymer, PLEC with excellent electroluminescent properties are obtained using a pulsed current bias scheme. The devices are very stable, with lifetimes in excess of 2000 h with initial luminance values above 450 cd m−2, a peak efficiency of 12.6 lm W−1, and sub-minute turn-on times. The stability of the devices is also studied by measuring the photoluminescence (PL) of the semiconductor during electroluminescent operation. The findings suggest that it is possible to observe the quenching of the PL in vertically stacked devices due to the advancement of the doped fronts in the film and an immediate PL recovery when the bias is removed.  相似文献   
86.
Imaging performance of A-PET: a small animal PET camera   总被引:6,自引:0,他引:6  
The evolution of positron emission tomography (PET) imaging for small animals has led to the development of dedicated PET scanner designs with high resolution and sensitivity. The animal PET scanner achieves these goals for imaging small animals such as mice and rats. The scanner uses a pixelated Anger-logic detector for discriminating 2 x 2 x 10 mm3 crystals with 19-mm-diameter photomultiplier tubes. With a 19.7-cm ring diameter, the scanner has an axial length of 11.9 cm and operates exclusively in three-dimensional imaging mode, leading to very high sensitivity. Measurements show that the scanner design achieves a spatial resolution of 1.9 mm at the center of the field-of-view. Initially designed with gadolinium orthosilicate but changed to lutetium- yttrium orthosilicate, the scanner now achieves a sensitivity of 3.6% for a point source at the center of the field-of-view with an energy window of 250-665 keV. Iterative image reconstruction, together with accurate data corrections for scatter, random, and attenuation, are incorporated to achieve high-quality images and quantitative data. These results are demonstrated through our contrast recovery measurements as well as sample animal studies.  相似文献   
87.
Here, the surface functionalization of CdSe and CdSe/CdS core/shell nanocrystals (NCs) with compact chloride and indium‐chloride‐complex ligands is reported. The ligands provide not only short interparticle distances but additionally control doping and passivation of surface trap states, leading to enhanced electronic coupling in NC‐based arrays. The solids based on these NCs show an excellent electronic transport behavior after heat treatment at the relatively low temperature of 190 °C. Indeed, the indium‐chlorido‐capped 4.5 nm CdSe NC based thin‐film field‐effect transistor reaches a saturation mobility of μ = 4.1 cm2 (V s)?1 accompanied by a low hysteresis, while retaining the typical features of strongly quantum confined semiconductor NCs. The capping with chloride ions preserves the high photoluminescence quantum yield ( ≈ 66%) of CdSe/CdS core/shell NCs even when the CdS shell is relatively thin (six monolayers). The simplicity of the chemical incorporation of chlorine and indium species via solution ligand exchange, the efficient electronic passivation of the NC surface, as well as their high stability as dispersions make these materials especially attractive for wide‐area solution‐processable fabrication of NC‐based devices.  相似文献   
88.
The fabrication and characterization of printed ion‐gel‐gated poly(3‐hexylthiophene) (P3HT) transistors and integrated circuits is reported, with emphasis on demonstrating both function and performance at supply voltages below 2 V. The key to achieving fast sub‐2 V operation is an unusual gel electrolyte based on an ionic liquid and a gelating block copolymer. This gel electrolyte serves as the gate dielectric and has both a short polarization response time (<1 ms) and a large specific capacitance (>10 µF cm?2), which leads simultaneously to high output conductance (>2 mS mm?1), low threshold voltage (<1 V) and high inverter switching frequencies (1–10 kHz). Aerosol‐jet‐printed inverters, ring oscillators, NAND gates, and flip‐flop circuits are demonstrated. The five‐stage ring oscillator operates at frequencies up to 150 Hz, corresponding to a propagation delay of 0.7 ms per stage. These printed gel electrolyte gated circuits compare favorably with other reported printed circuits that often require much larger operating voltages. Materials factors influencing the performance of the devices are discussed.  相似文献   
89.
如果你拥有一部智能电话(例如,BlackBerry、Palm…等)、个人数字助理(PDA)、笔记本电脑或PC,那么你也许已经熟悉了用单一按钮就可以利用的多种电源功能。这些设备仅是这类例子中的几个,在这类设备中,用来给设备加电和断电的主按钮常常具有附加功能,通常是“备用”或“冬眠”模式,这种模式将设备置于一种省电模式。在笔记本电脑中,当你暂时离开时,备用模式切断对硬盘驱动器和显示屏的供电,将数据存储到存储器中,保持笔记本电脑基本部分的运行。在冬眠模式,笔记本电脑完全停机,将数据保存到硬盘驱动器而不是存储器中,  相似文献   
90.
In the reliability theme a central activity is to investigate, characterize and understand the contributory wear-out and overstress mechanisms to meet through-life reliability targets. For power modules, it is critical to understand the response of typical wear-out mechanisms, for example wire-bond lifting and solder degradation, to in-service environmental and load-induced thermal cycling. This paper presents the use of a reduced-order thermal model coupled with physics-of-failure-based life models to quantify the wear-out rates and life consumption for the dominant failure mechanisms under prospective in-service and qualification test conditions. When applied in the design of accelerated life and qualification tests it can be used to design tests that separate the failure mechanisms (e.g. wire-bond and substrate-solder) and provide predictions of conditions that yield a minimum elapsed test time. The combined approach provides a useful tool for reliability assessment and estimation of remaining useful life which can be used at the design stage or in-service. An example case study shows that it is possible to determine the actual power cycling frequency for which failure occurs in the shortest elapsed time. The results demonstrate that bond-wire degradation is the dominant failure mechanism for all power cycling conditions whereas substrate-solder failure dominates for externally applied (ambient or passive) thermal cycling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号