首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   31篇
电工技术   4篇
化学工业   112篇
金属工艺   8篇
机械仪表   12篇
建筑科学   11篇
矿业工程   1篇
能源动力   11篇
轻工业   60篇
水利工程   1篇
无线电   38篇
一般工业技术   61篇
冶金工业   15篇
原子能技术   3篇
自动化技术   67篇
  2024年   3篇
  2023年   5篇
  2022年   16篇
  2021年   31篇
  2020年   19篇
  2019年   13篇
  2018年   23篇
  2017年   16篇
  2016年   19篇
  2015年   12篇
  2014年   11篇
  2013年   29篇
  2012年   25篇
  2011年   31篇
  2010年   25篇
  2009年   17篇
  2008年   11篇
  2007年   12篇
  2006年   10篇
  2005年   10篇
  2004年   8篇
  2003年   5篇
  2002年   7篇
  2001年   8篇
  2000年   3篇
  1999年   7篇
  1998年   8篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1990年   1篇
  1984年   3篇
  1983年   1篇
  1980年   1篇
排序方式: 共有404条查询结果,搜索用时 15 毫秒
391.
We investigate the fabrication of nanometric patterns on silicon surfaces by using the parallel-local anodic oxidation technique with soft stamps. This method yields silicon oxide nanostructures 15?nm high, namely at least five times higher than the nanostructures made with local anodic oxidation using atomic force microscopy, and thanks to the size of the stamp enables one to pattern the surface across a centimetre length scale. To implement this technique, we built a machine to bring the metallized polydimethylsiloxane stamp in contact with the silicon surface, subsequently inserted in a sealed chamber with controlled relative humidity. The oxide nanostructures are fabricated when a bias voltage of 36?V is applied between the stamp and the silicon for 2?min, with a relative humidity of 90%. The flexibility of the stamp enables a homogeneous conformal contact with the silicon surface, resulting in an excellent reproducibility of the process. Moreover, by means of two subsequent oxidations with the same stamp and just rotating the sample, we are able to fabricate complex nanostructures. Finally, a detailed study of the oxidation mechanism, also using a finite element analysis, has been performed to understand the underlying mechanism.  相似文献   
392.
This study aimed to evaluate the effects of hesperidin (HE) on in vitro osteoclastogenesis and dietary supplementation on mouse periodontal disease and femoral bone phenotype. RAW 264.7 cells were stimulated with RANKL in the presence or absence of HE (1, 100 or 500 µM) for 5 days, and evaluated by TRAP, TUNEL and Western Blot (WB) analyses. In vivo, C57BL/6 mice were given HE via oral gavage (125, 250 and 500 mg/kg) for 4 weeks. A sterile silk ligature was placed between the first and second right maxillary molars for 10 days and microcomputed tomography (μCT), histopathological and immunohistochemical evaluation were performed. Femoral bones subjected or not to dietary HE (500 mg/kg) for 6 and 12 weeks were evaluated using μCT. In vitro, HE 500 µM reduced formation of RANKL-stimulated TRAP-positive(+) multinucleated cells (500 µM) as well as c-Fos and NFATc1 protein expression (p < 0.05), markers of osteoclasts. In vivo, dietary HE 500 mg/kg increased the alveolar bone resorption in ligated teeth (p < 0.05) and resulted in a significant increase in TRAP+ cells (p < 0.05). Gingival inflammatory infiltrate was greater in the HE 500 mg/kg group even in the absence of ligature. In femurs, HE 500 mg/kg protected trabecular and cortical bone mass at 6 weeks of treatment. In conclusion, HE impaired in vitro osteoclastogenesis, but on the contrary, oral administration of a high concentration of dietary HE increased osteoclast numbers and promoted inflammation-induced alveolar bone loss. However, HE at 500 mg/kg can promote a bone-sparing effect on skeletal bone under physiological conditions.  相似文献   
393.
Little has been published so far on the fabrication of porous ceramic films by using the Breath Figure method. In this work we explored the Breath Figure method to obtain ceramics with patterned surfaces. A UV cross-linkable polysiloxane was used to produce Breath Figures with tunable pore size. Pores formation, in terms of size and distribution on the polysiloxane films, were studied as a function of the concentration of the starting solution and time before UV irradiation. The polymeric breath figures were then pyrolyzed in controlled atmosphere to obtain, through the polymer-derived ceramic, PDCs, route the corresponding ceramic preserving the original porous surface. Pyrolysis under different gases, in particular air, nitrogen and ammonia, allows obtaining films of three different ceramic materials: silicon dioxide, SiO2, silicon oxycarbide, SiOC and silicon oxynitride, SiON respectively.  相似文献   
394.
395.
396.
Previous experimental data of xylose‐to‐xylitol bioconversion by Debaryomyces hansenii carried out according to a 33 full factorial design were used to model this process by two different artificial neural network (ANN) training methods. Models obtained for four responses were compared with those of response surface methodology (RSM). ANN models were shown to be superior to RSM in the predictive capacity, whereas the latter showed better performance in the generalization capability step. RSM with optimization using a genetic algorithm was revealed as a whole to be the best modeling option, which suggests that the comparative performances of RSM and ANN may be a highly problem‐specific issue.  相似文献   
397.
The structural volume changes following photoexcitation of o-nitrobenzyl systems are used to estimate the excited state pKa of the aci-nitro intermediate in aqueous solutions. The rather large contractions induced in solution by UV excitation are due to the rapid deprotonation of the short-lived aci-nitro intermediate, which leads to the formation of two charged species. The magnitude of the measured contraction as a function of the pH in acidic solutions follows a sigmoidal curve, from which it is possible to extract the pKa of the aci-nitro intermediate. This method is generally applicable to short-lived intermediates with stronger acid character than the parent compound, provided they undergo irreversible chemical transformations to a product that cannot rebind the photodetached proton. The reaction volume for water formation from its ionic constituents at basic pH allows the determination of the deprotonation quantum yields.  相似文献   
398.
The cytotoxic complex formed between α‐lactalbumin and oleic acid (OA) has inspired many studies on protein–fatty acid complexes, but structural insight remains sparse. After having used small‐angle X‐ray scattering (SAXS) to obtain structural information, we present a new, generic structural model of cytotoxic protein–oleic acid complexes, which we have termed liprotides (lipids and partially denatured proteins). Twelve liprotides formed from seven structurally unrelated proteins and prepared by different procedures all displayed core–shell structures, each with a micellar OA core and a shell consisting of flexible, partially unfolded protein, which stabilizes the OA micelle. The common structure explains similar effects exerted on cells by different liprotides and is consistent with a cargo off‐loading of the OA into cell membranes.  相似文献   
399.
The ideal food packaging materials are recyclable, biodegradable, and compostable. Starch from plant sources, such as tubers, legumes, cereals, and agro-industrial plant residues, is considered one of the most suitable biopolymers for producing biodegradable films due to its natural abundance and low cost. The chemical modification of starch makes it possible to produce films with better technological properties by changing the functional groups into starch. Using biopolymers extracted from agro-industrial waste can add value to a raw material that would otherwise be discarded. The recent COVID-19 pandemic has driven a rise in demand for single-use plastics, intensifying pressure on this already out-of-control issue. This review provides an overview of biopolymers, with a particular focus on starch, to develop sustainable materials for food packaging. This study summarizes the methods and provides a potential approach to starch modification for improving the mechanical and barrier properties of starch-based films. This review also updates some trends pointed out by the food packaging sector in the last years, considering the impacts of the COVID-19 pandemic. Perspectives to achieve more sustainable food packaging toward a more circular economy are drawn.  相似文献   
400.
Biosurfactants can be applied in the formulation of personal care products, as food additives, and as biocontrol agents in the agricultural sector. Glycolipids and lipopeptides represent an important group of microbial-based biosurfactants with biostimulating properties. Among them, the mannosylerythritol lipids also presented antimicrobial activity, mostly against Gram-positive bacteria and phytopathogenic fungi. In this sense, mannosylerythritol lipids are a potential safer green alternative for partially replacing synthetic pesticides. This review aimed to critically discuss the current state of the art and future trends of mannosylerythritol lipids as green pesticides and biostimulants for seed germination and plant growth. Due to their chemical structure, mannosylerythritol lipids are likely related to energy pathways such as glycolysis and Krebs cycle, i.e. a direct cellular biostimulant potential. In this case, experimental evidence from other glycolipids indicated that structural and chemical changes as a potential drug vehicle due to morphological changes caused by biosurfactant–membrane interaction. In addition, like other biosurfactants, mannosylerythritol lipids can trigger self-defense mechanisms, leading to a lower frequency of phytopathogen infections. Therefore, mannosylerythritol lipids have the potential for biostimulation and antiphytopathogenic action, despite that to date no data are available on mannosylerythritol lipids as biostimulants and green pesticides simultaneously. Based on the current state of the art, mannosylerythritol lipids have great potential for a biotechnological advance toward more sustainable agriculture. © 2022 Society of Chemical Industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号