首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1737篇
  免费   83篇
  国内免费   5篇
电工技术   23篇
综合类   1篇
化学工业   410篇
金属工艺   19篇
机械仪表   18篇
建筑科学   85篇
矿业工程   1篇
能源动力   37篇
轻工业   122篇
水利工程   9篇
石油天然气   3篇
无线电   204篇
一般工业技术   328篇
冶金工业   234篇
原子能技术   9篇
自动化技术   322篇
  2024年   4篇
  2023年   24篇
  2022年   112篇
  2021年   107篇
  2020年   55篇
  2019年   48篇
  2018年   43篇
  2017年   50篇
  2016年   60篇
  2015年   50篇
  2014年   73篇
  2013年   113篇
  2012年   85篇
  2011年   112篇
  2010年   66篇
  2009年   78篇
  2008年   74篇
  2007年   66篇
  2006年   59篇
  2005年   43篇
  2004年   33篇
  2003年   29篇
  2002年   23篇
  2001年   13篇
  2000年   25篇
  1999年   25篇
  1998年   74篇
  1997年   41篇
  1996年   37篇
  1995年   19篇
  1994年   21篇
  1993年   16篇
  1992年   8篇
  1991年   10篇
  1990年   10篇
  1988年   10篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1983年   10篇
  1981年   10篇
  1980年   4篇
  1979年   7篇
  1978年   5篇
  1976年   11篇
  1974年   4篇
  1973年   6篇
  1969年   3篇
  1967年   2篇
  1936年   2篇
排序方式: 共有1825条查询结果,搜索用时 15 毫秒
41.
Autonomous Robots - This paper presents a novel system for autonomous, vision-based drone racing combining learned data abstraction, nonlinear filtering, and time-optimal trajectory planning. The...  相似文献   
42.
Autonomous Robots - We propose a simple yet effective set of local control rules to make a small group of “herder agents” collect and contain in a desired region a large ensemble of...  相似文献   
43.
Centrifugal casting is a technology used for manufacturing hybrid rocket paraffin grains. This technology helps avoiding voids formation inside the solid paraffin as it cools. Voids are formed because of air bubbles being entrapped while pouring and because the liquid wax shrinks by 17–19% upon cooling. In this work, the centrifugal casting process for the manufacturing of paraffin cylinders was prototyped at two different scales considering critical casting issues. The effects of process parameters (rotational speed, melt temperature, and flow rate) on the tensile properties of the manufactured grains were analyzed. The results of the optimization conducted at the lower scale (2.5?kg) were up scaled to manufacture 25?kg grains. The resulting mechanical properties complied with the design specifications, and they were better than those characterized from the gravity cast wax. A numerical model of growth and dissolution of bubbles during the process was then developed to predict the quality of the castings. The numerical results showed how increasing the mold rotational speed up to 1800?rpm reduced the removal time. However, compared to grains solidification time, the predicted removal times were much shorter, proving the advantage of centrifugal casting in counteracting voids formation.  相似文献   
44.
This paper describes the results of site investigations, monitoring, stability analyses, and soil-pipe interaction modeling of a built-up slope located near Pineto (Abruzzo Province, Central Italy), where a gas pipeline exploded on March 6th, 2015, due to heavy rains inducing slope movements. The slope is formed by OC clay, covered with an upper 10- to 14-m-thick clayey-sandy silt colluvial layer. The explosion in the upper portion of the slope caused extensive damage to existing buildings and threatened human lives. Soon after the event, a site investigation and monitoring program was carried out. A detailed topographic survey and hydrological data were analyzed in order to characterize possible critical rainfall events. The stability of the slope was analyzed both in pre- and in post-explosion conditions. The profiles of the DMT horizontal stress index K D helped to identify multiple slip surfaces. Then, the results of the site investigation and stability analyses were used to implement a simplified finite element model aimed to describe the soil-pipeline interaction, taking into account the role of the observed wrinkle in the pipeline. The numerical simulations reveal the crucial role played by the slope movements, and by the wrinkle as well, in inducing the collapse of the pipe.  相似文献   
45.
The collisional deactivation of the laser excited states A 2Sigma+(v' = 1, N' = 4, 12) of OH in a flame is studied by measurement of spectrally resolved fluorescence decays in the picosecond time domain. Quenching and depolarization rates, as well as vibrational energy-transfer (VET) and rotational energy-transfer (RET) rates are determined. An empirical model describes the temporal evolution of the quenching and VET rates that emerge from the rotational-state relaxation. Fitting this model to the measured 1-0 and 0-0 fluorescence decays yields the quenching and VET rates of the initially excited rotational state along with those that correspond to a rotationally equilibrated vibronic-state population. VET from the higher rotational state (N' = 12) shows a tendency for resonant transitions to energetic close-lying levels. RET is investigated by analysis of the temporal evolution of the 1-1 emission band. The observed RET is well described by the energy-corrected sudden-approximation theory in conjunction with a power-gap law.  相似文献   
46.
47.
Multi-objective evolutionary algorithms (MOEAs) have received increasing interest in industry because they have proved to be powerful optimizers. Despite the great success achieved, however, MOEAs have also encountered many challenges in real-world applications. One of the main difficulties in applying MOEAs is the large number of fitness evaluations (objective calculations) that are often needed before an acceptable solution can be found. There are, in fact, several industrial situations in which fitness evaluations are computationally expensive and the time available is very short. In these applications efficient strategies to approximate the fitness function have to be adopted, looking for a trade-off between optimization performance and efficiency. This is the case in designing a complex embedded system, where it is necessary to define an optimal architecture in relation to certain performance indexes while respecting strict time-to-market constraints. This activity, known as design space exploration (DSE), is still a great challenge for the EDA (electronic design automation) community. One of the most important bottlenecks in the overall design flow of an embedded system is due to simulation. Simulation occurs at every phase of the design flow and is used to evaluate a system which is a candidate for implementation. In this paper we focus on system level design, proposing an extensive comparison of the state-of-the-art of MOEA approaches with an approach based on fuzzy approximation to speed up the evaluation of a candidate system configuration. The comparison is performed in a real case study: optimization of the performance and power dissipation of embedded architectures based on a Very Long Instruction Word (VLIW) microprocessor in a mobile multimedia application domain. The results of the comparison demonstrate that the fuzzy approach outperforms in terms of both performance and efficiency the state of the art in MOEA strategies applied to DSE of a parameterized embedded system.  相似文献   
48.
In this paper, we introduce the Minutia Cylinder-Code (MCC): a novel representation based on 3D data structures (called cylinders), built from minutiae distances and angles. The cylinders can be created starting from a subset of the mandatory features (minutiae position and direction) defined by standards like ISO/IEC 19794-2 (2005). Thanks to the cylinder invariance, fixed-length, and bit-oriented coding, some simple but very effective metrics can be defined to compute local similarities and to consolidate them into a global score. Extensive experiments over FVC2006 databases prove the superiority of MCC with respect to three well-known techniques and demonstrate the feasibility of obtaining a very effective (and interoperable) fingerprint recognition implementation for light architectures.  相似文献   
49.
Higher‐order finite element methods have emerged as an important discretization scheme for simulation. They are increasingly used in contemporary numerical solvers, generating a new class of data that must be analyzed by scientists and engineers. Currently available visualization tools for this type of data are either batch oriented or limited to certain cell types and polynomial degrees. Other approaches approximate higher‐order data by resampling resulting in trade‐offs in interactivity and quality. To overcome these limitations, we have developed a distributed visualization system which allows for interactive exploration of non‐conforming unstructured grids, resulting from space‐time discontinuous Galerkin simulations, in which each cell has its own higher‐order polynomial solution. Our system employs GPU‐based raycasting for direct volume rendering of complex grids which feature non‐convex, curvilinear cells with varying polynomial degree. Frequency‐based adaptive sampling accounts for the high variations along rays. For distribution across a GPU cluster, the initial object‐space partitioning is determined by cell characteristics like the polynomial degree and is adapted at runtime by a load balancing mechanism. The performance and utility of our system is evaluated for different aeroacoustic simulations involving the propagation of shock fronts.  相似文献   
50.
Signal processors exploiting ASIC acceleration suffer from sky-rocketing manufacturing costs and long design cycles. FPGA-based systems provide a programmable alternative for exploiting computation parallelism, but the flexibility they provide is not as high as in processor-oriented architectures: HDL or C-to-HDL flows still require specific expertise and a hardware knowledge background. On the other hand, the large size of the configuration bitstream and the inherent complexity of FPGA devices make their dynamic reconfiguration not a very viable approach. Coarse-grained reconfigurable architectures (CGRAs) are an appealing solution but they pose implementation problems and tend to be application specific. This paper presents a scalable CGRA which eases the implementation of algorithms on field programmable gate array (FPGA) platforms. This design option is based on two levels of programmability: it takes advantage of performance and reliability provided by state-of-the-art FPGA technology, and at the same time it provides the user with flexibility, performance and ease of reconfiguration typical of standard CGRAs. The basic cell template provides advanced features such as sub-word SIMD integer and floating-point computation capabilities, as well as saturating arithmetic. Multiple reconfiguration contexts and partial run-time reconfiguration capabilities are provided, tackling this way the problem of high reconfiguration overhead typical of FPGAs. Selected instances of the proposed architecture have been implemented on an Altera Stratix II EP2S180 FPGA. On this system, we mapped some common DSP, image processing, 3D graphics and audio compression algorithms in order to validate our approach and to demonstrate its effectiveness by benchmarking the benefits achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号