首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1078篇
  免费   64篇
  国内免费   5篇
电工技术   16篇
综合类   1篇
化学工业   319篇
金属工艺   10篇
机械仪表   6篇
建筑科学   61篇
能源动力   34篇
轻工业   86篇
水利工程   6篇
无线电   104篇
一般工业技术   212篇
冶金工业   18篇
原子能技术   7篇
自动化技术   267篇
  2024年   3篇
  2023年   23篇
  2022年   108篇
  2021年   97篇
  2020年   52篇
  2019年   45篇
  2018年   39篇
  2017年   44篇
  2016年   54篇
  2015年   45篇
  2014年   59篇
  2013年   89篇
  2012年   71篇
  2011年   89篇
  2010年   48篇
  2009年   57篇
  2008年   51篇
  2007年   37篇
  2006年   27篇
  2005年   30篇
  2004年   15篇
  2003年   19篇
  2002年   7篇
  2001年   4篇
  2000年   7篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   6篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1990年   1篇
  1973年   1篇
排序方式: 共有1147条查询结果,搜索用时 15 毫秒
101.
This paper addresses the need for a structured approach to environmental assessment and improvement. We propose a computer-aided methodology, named Eco-OptiCAD, based on the integration of Structural Optimization and Life Cycle Assessment (LCA) tools. Eco-OptiCAD supports the designer during product development, highlighting when and where the core of the environmental impact lies. Furthermore, it provides effective tools to address such impacts, improving the original product, while ensuring structural and functional requirements. It foresees the synergic use of (1) virtual prototyping tools, such as 3D CAD, Finite Element Analysis (FEA) and Structural optimization, (2) function modeling methodology and (3) Life Cycle Assessment (LCA) tools. The kernel of the methodology is constituted by a set of optimization strategies and a module, named Life Cycle Mapping (LCM). In particular, we have conceived ten optimization strategies converting environmental objectives and constraints into structural and geometrical parameters. They enable the designer to generate alternative green scenarios according to the triad shape–material–production. The LCM tool has been specifically developed to easily trace the growth of environmental impacts throughout the product's life cycle and allow the user to focus his effort on the most relevant aspects. Thanks to the integration of the structural optimizer with an LCA map, the designer becomes aware of the consequences that each change in the geometry, the material or the manufacturing process will produce on the environmental impact of the product throughout its life cycle. With a complete view of the product life cycle, the designer can improve a single phase, while retaining a global perspective; thus avoiding the possibility of gaining a local green improvement at the cost of a global increase in environmental impacts.  相似文献   
102.
Energy harvesting has recently emerged as a feasible option to increase the operating time of sensor networks. If each node of the network, however, is powered by a fluctuating energy source, common power management solutions have to be reconceived. This holds in particular if real-time responsiveness of a given application has to be guaranteed. Task scheduling at the single nodes should account for the properties of the energy source, capacity of the energy storage as well as deadlines of the single tasks. We show that conventional scheduling algorithms (like e.g. EDF) are not suitable for this scenario. Based on this motivation, we have constructed optimal scheduling algorithms that jointly handle constraints from both energy and time domain. Further we present an admittance test that decides for arbitrary task sets, whether they can be scheduled without deadline violations. To this end, we introduce the concept of energy variability characterization curves (EVCC) which nicely captures the dynamics of various energy sources. Simulation results show that our algorithms allow significant reductions of the battery size compared to Earliest Deadline First scheduling.
Clemens MoserEmail:
  相似文献   
103.
104.
Scalability from single-qubit operations to multi-qubit circuits for quantum information processing requires architecture-specific implementations. Semiconductor hybrid qubit architecture is a suitable candidate to realize large-scale quantum information processing, as it combines a universal set of logic gates with fast and all-electrical manipulation of qubits. We propose an implementation of hybrid qubits, based on Si metal-oxide-semiconductor (MOS) quantum dots, compatible with the CMOS industrial technological standards. We discuss the realization of multi-qubit circuits capable of fault-tolerant computation and quantum error correction, by evaluating the time and space resources needed for their implementation. As a result, the maximum density of quantum information is extracted from a circuit including eight logical qubits encoded by the [[7, 1, 3]] Steane code. The corresponding surface density of logical qubits is 2.6 Mqubit/cm\(^2\).  相似文献   
105.
106.
An input design method is presented for guaranteeing the diagnosability of faults from the outputs of a system. Faults are modeled by discrete switches between linear models with bounded disturbances and measurement errors. Zonotopes are used to efficiently characterize the set of inputs that are guaranteed to lead to outputs that are consistent with at most one fault scenario. Provided that this set is nonempty, an element is then chosen that is minimally harmful with respect to other control objectives. This approach leads to a nonconvex optimization problem, but is shown to be equivalent to a mixed-integer quadratic program that can be solved efficiently. Methods are given for reducing the complexity of this program, including an observer-based method that drastically reduces the number of binary variables when many sampling times are required for diagnosis.  相似文献   
107.
One of the open problems to control a parallel robot in real-time is the larger number of parameters to be incorporated in the control model when compared to serial robots. This paper presents an innovative vision-based method to control a delta-type parallel robot based on Linear Camera-Space Manipulation. The proposed method is a simple and robust technique capable of achieving real-time control of robots without relying on the calibration of either the robot or the environment parameters. To document the robustness of this technique, a sensitivity analysis was performed in simulation where the effect of two sources of error on the end-point positioning are considered. Such sources are the variability of each link’s parameters, and the uncertainty of the visual measurements. Experimental results on a Clavel’s delta parallel robot show that end-point positioning errors obtained with Linear Camera-Space Manipulation are less than 1.5 mm, demonstrating a low sensitivity to parameter uncertainty in qualitative agreement with the simulation results. The results show that the developed approach is advantageous to control parallel robots for industrial applications in real-time and can obviate to a number of open problems common with the control of parallel robots.  相似文献   
108.
109.
Journal of Intelligent Manufacturing - This paper presents a critical review of laser pyrolysis. Although this technology is almost 60 years old, in literature many researchers, both from...  相似文献   
110.
A reoptimization problem describes the following scenario: given an instance of an optimization problem together with an optimal solution for it, we want to find a good solution for a locally modified instance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号