首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   583篇
  免费   39篇
  国内免费   1篇
电工技术   11篇
综合类   2篇
化学工业   166篇
金属工艺   25篇
机械仪表   32篇
建筑科学   14篇
矿业工程   3篇
能源动力   65篇
轻工业   29篇
水利工程   8篇
石油天然气   11篇
无线电   30篇
一般工业技术   89篇
冶金工业   20篇
原子能技术   2篇
自动化技术   116篇
  2024年   2篇
  2023年   11篇
  2022年   21篇
  2021年   26篇
  2020年   30篇
  2019年   43篇
  2018年   40篇
  2017年   37篇
  2016年   52篇
  2015年   33篇
  2014年   45篇
  2013年   63篇
  2012年   42篇
  2011年   54篇
  2010年   26篇
  2009年   22篇
  2008年   17篇
  2007年   15篇
  2006年   11篇
  2005年   6篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1979年   1篇
排序方式: 共有623条查询结果,搜索用时 15 毫秒
51.
Journal of Electroceramics - In this research, hard/soft CoFe2O4/Ni magnetic nanocomposite samples with different concentrations of Ni were successfully produced by a two-step mechanical alloying...  相似文献   
52.
In this study, poly(vinilydene fluoride-co-hexafluoropropylene)(PVDF-HFP) was used for preparation of hydrophobic membranes using non-solvent induced phase inversion(NIPS) technique. PVDF-HFP copolymer with concentrations of 10 wt% and 12 wt% was prepared to investigate the effect of polymer concentration on pore structure,morphology, hydrophobicity and performance of prepared membranes. Besides, the use of two coagulation baths with the effects of parameters such as coagulant time, polymer type and concentration, and the amount of nonsolvent were studied. The performance of prepared membranes was evaluated based on the permeability and selectivity of oxygen and nitrogen from a gas mixture of nitrogen/oxygen under operating conditions of feed flow rate(1–5 L·min~(-1)), inlet pressure to membrane module(0.1–0.5 MPa) and temperatures between 25 and 45 °C. The results showed that the use of two coagulation baths with different compositions of distillated water and isopropanol,coagulant time, polymer type and concentration, and the amount of non-solvent additive have the most effect on pore structure, morphology, thickness, roughness and crystallinity of fabricated membranes. Porosity ranges for the three fabricated membranes were determined, where the maximum porosity was 73.889% and the minimum value was 56.837%. Also, the maximum and minimum average thicknesses of membrane were 320.85 μm and115 μm. Besides, the values of 4.7504 × 10~(-7) mol· m~(-2)· s~(-1)· Pa~(-1), 0.525 and 902.126 nm were achieved for maximum oxygen permeance, O_2/N_2 selectivity and roughness, respectively.  相似文献   
53.
In this study, modification of poly(L-lactic acid) (PLLA) electrospun nanofibrous scaffolds blending with polyethylenimine (PEI) in different blend ratios was performed. The sample with 85:15 blend ratio revealed most promising results, and was selected for further modification with gelatin. It was found that the presence of PEI could enhanced porosity, mechanical properties, surface/bulk hydrophilicity and also gelatin grafting density about five times with positive effect on cell behavior. The results indicated that the limitations of PLLA electrospun nanofibers for potential application as a functional tissue engineering scaffold (i.e., poor cell adhesion and necrosis of host tissues as a result of providing acidic environment while degradation) could be overcome through blending with PEI and grafting with gelatin.  相似文献   
54.
Low-temperature wet chemical bath deposition (CBD) method is one of the most efficient and least hazardous solution-based techniques which is widely employed to grow ZnO NRs. In CBD method, a seed layer is usually deposited on the substrate. In this paper, high quality ZnO and aluminum doped ZnO (AZO) seed layers are sputtered on the indium tin oxide (ITO) coated glass. In continue, aligned ZnO NRs are grown on the AZO and ZnO seed layers via CBD technique. The effect of the growth time and seed layer on the physical properties of as-grown ZnO NRs are investigated. According to the results, the seed layer plays an essential role on the growth orientation and growth rate of the ZnO NRs. The ZnO NRs grown on AZO seed layer are more aligned rather than ZnO seed layer due to their higher texture coefficients. The relative photoluminescence (PL) intensity ratio of near band emission (NBE) to deep level emission (DLE) (INBE/IDLE) for the ZnO NRs grown on AZO and ZnO seed layers are calculated as 7.45 and 2.62, respectively. To investigate the performance of the as-grown ZnO NRs, near ultraviolet organic light-emitting diodes (UV-OLEDs) using ZnO NRs array as n-type material and poly [2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) conjugated polymer as p-type material have been fabricated. The total concentration of traps (Nt), the characteristic energies (Et) and the turn-on voltages for the devices with the structures of ITO/AZO/ZnO NRs/MEH-PPV/Al (device A) and ITO/ZnO/ZnO NRs/MEH-PPV/Al (device B) are attained 7.65 × 1016 and 7.75 × 1016 cm?3, 0.232 and 0.206 eV, 23 and 21 V, respectively. Moreover, based on the electroluminescence (EL) spectra, the NBE peaks for device A and B are obtained nearly in the wavelengths of 382 and 388 nm, respectively. Finally, various charge carrier transportation processes of prepared UV-OLEDs have been studied, systematically.  相似文献   
55.
Fibrous monoliths (FMs) exhibit graceful failure in flexure and have higher toughness values. In this research, a mixture of Al2O3 and SiC as the core and graphite as the shell material of fibers were produced by extrusion-molding technique and after aligning along intended directions (0°, 90°, and 0°/90°) were sintered using the hot-pressing method at the temperature of 1500°C under pressure of 35 MPa for 1 hour. The significance of fibers orientation angle and the cell to cell boundary volume ratio in defining the fracture behavior of the FMs was detected. Because of the extensive crack interactions with graphite cell boundary such as crack deflection and delamination, with increasing cell boundary content from 25 to 30 vol%, the fracture toughness was enhanced. The highest flexural strength (184.8 ± 0.61 MPa) obtained from samples with 0° fibers orientation compared to 0°/90°. Since in the transverse plies (layers with 90° aligning), the properties of matrix phase are dominant, hence the strength in specimens with 0°/90° fibers orientation decreased considerably due to weak graphite matrix phase. In addition, the fracture toughness value increased up to 8.35 ± 0.74 MPa·m1/2 for the unidirectional architecture of (0°) in comparison with cross-ply (0°/90°) architecture.  相似文献   
56.
The electrochemical trimerization of 4-tert-butylcatechol via anodic oxidation of 4-tert-butylcatechol (1) is described. The mechanism of trimerization has been studied in aqueous solution using cyclic voltammetry and controlled-potential coulometry. The electrochemical synthesis of trimer 3a has been successfully performed in an undivided cell in good yield and purity.  相似文献   
57.
Electrochemical synthesis of coordination polymers of Cu(II), [Cu(TDA)]n and [Cu2(BTC)(H2O)6?6H2O]n in which H2TDA is 2,2′-thiodiacetic acid and BTC stands for 1,2,4,5-benzenetetracarboxylate was carried out by the electrochemical oxidation of Cu anode in the presence of H2TDA (a flexible ligand), and 1,2,4,5-benzentetracarboxylic acid (H4BTC) (a rigid ligand) in aqueous solutions. The structure of coordination polymers were characterized by scanning electron microscopy, X-ray powder diffraction, elemental analysis, thermal gravimetric and differential thermal analyses. The crystal structure of the compounds consists of one-dimensional cubical crystal polymeric units of [Cu(TDA)]n and [Cu2(BTC)(H2O)6?6H2O]n. Furthermore, the coordination number of Cu (II) ions in synthesized coordination polymers to be found five. The main advantages of electrosynthesis are the minor synthesis time, the milder conditions and the facile synthesis of coordination polymer coatings.  相似文献   
58.
A steady-state three-dimensional non-isothermal computational fluid dynamics (CFD) model of a proton exchange membrane fuel cell is presented. Conservation of mass, momentum, species, energy, and charge, as well as electrochemical kinetics are considered. In this model, the effect of interfacial contact resistance is also included. The numerical solution is based on a finite-volume method. In this study the effects of flow channel dimensions on the cell performance are investigated. Simulation results indicate that increasing the channel width will improve the limiting current density. However, it is observed that an optimum shoulder size of the flow channels exists for which the cell performance is the highest. Polarization curves are obtained for different operating conditions which, in general, compare favorably with the corresponding experimental data. Such a CFD model can be used as a tool in the development and optimization of PEM fuel cells.  相似文献   
59.
In this paper, the robust bounded-input bounded-output stability of a large class of linear time invariant fractional order families of systems with real parametric uncertainties is analyzed. The transfer functions contain polynomials in fractional powers of the Laplace variable s, possibly in combination with exponentials of fractional powers of s. Using the concept of the value set and a generalization of the zero exclusion condition theorem, a theorem to check the robust bounded-input bounded-output stability of these families of systems is presented. An upper cutoff frequency for drawing the value sets is provided as well. Finally, two numerical examples are given to illustrate results obtained by the lemma and theorems presented in the paper.  相似文献   
60.
In this study, carbon monoxide removal by preferential oxidation in a hydrogen-rich stream is simulated between two parallel infinite plates of 150 μm distance. A three-step kinetic is considered that includes carbon monoxide oxidation, hydrogen oxidation and water–gas shift reaction. The walls temperature is in the range of 80–120 °C. The function of this microreactor is to reduce carbon monoxide content from about 2% to below 10 ppm, suitable for use in a PEM fuel cell. Based on the problem conditions, the flow is in the continuum regime and application of the Navier–Stokes equations is admissible. In order to simulate the reacting flow, continuity, conservations of x- & y-momentum, conservation of energy, conservation of species, state equation and reaction rates are simultaneously solved through SIMPLE algorithm by utilizing power-law scheme. Effects of important parameters including walls temperature, steam content, CO content and O2/CO are assessed. It is observed that increasing walls temperature or oxygen content will increase both CO selectivity and conversion. It is also found that by steam addition, CO conversion is improved without significant change of CO selectivity. These results are in good agreement with previous published data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号