首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   9篇
电工技术   1篇
综合类   1篇
化学工业   85篇
金属工艺   2篇
机械仪表   2篇
建筑科学   2篇
能源动力   4篇
轻工业   41篇
水利工程   1篇
石油天然气   1篇
无线电   7篇
一般工业技术   39篇
冶金工业   33篇
原子能技术   1篇
自动化技术   18篇
  2023年   6篇
  2022年   14篇
  2021年   14篇
  2020年   3篇
  2019年   9篇
  2018年   4篇
  2017年   8篇
  2016年   7篇
  2014年   4篇
  2013年   14篇
  2012年   15篇
  2011年   17篇
  2010年   12篇
  2009年   12篇
  2008年   9篇
  2007年   17篇
  2006年   9篇
  2005年   8篇
  2004年   11篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  1999年   4篇
  1998年   6篇
  1997年   4篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有238条查询结果,搜索用时 31 毫秒
221.
Summary Copolymers of methyl methacrylate(MMA) with N,N-dimethylaminopropylacrylamide (DMA) were heated at various temperatures, and their thermal crosslinking was investigated. A copolymer with a compsition of [MMA]/[DMA] =3 became completely insoluble in chloroform when heated at 180°C for 5 minutes or at 150°C for 20 minutes. Other copolymers containing less than 5 mol % DNA also crosslinked when heated at 170°C for 30 minutes. A mixture of polyMMA with N,N-dimethylaminopropylbenzamide also crosslinked when heated at 170°C. A copolymer of styrene with DMA also crosslinked when heated at above 140°C although the crosslinking was much slower than that of poly(MMA-co-DMA). The formation of imide linkages is proposed as the crosslinking mechanism.  相似文献   
222.
Understanding the adsorption mechanisms of large molecules on metal surfaces is a demanding task. Theoretical predictions are difficult because of the large number of atoms that have to be considered in the calculations, and experiments aiming to solve the molecule-substrate interaction geometry are almost impossible with standard laboratory techniques. Here, we show that the adsorption of complex organic molecules can induce perfectly ordered nanostructuring of metal surfaces. We use surface X-ray diffraction to investigate in detail the bonding geometry of C(60) with the Pt(111) surface, and to elucidate the interaction mechanism leading to the restructuring of the Pt(111) surface. The chemical interaction between one monolayer of C(60) molecules and the clean Pt(111) surface results in the formation of an ordered sqrt[13] x sqrt[13]R13.9 degrees reconstruction based on the creation of a surface vacancy lattice. The C(60) molecules are located on top of the vacancies, and 12 covalent bonds are formed between the carbon atoms and the 6 platinum surface atoms around the vacancies. In-plane displacements induced on the platinum substrate are of the order of a few picometres in the top layer, and are undetectable in the deeper layers.  相似文献   
223.
An Upflow Anaerobic Sludge Blanket Reactor/Continuous Stirred Tank Reactor was used sequentially to decolorize and mineralize C.I. Direct Black 38 azo dye (3200 mg/L) in a synthetic wastewater containing glucose as co-substrate. At the steady state conditions color was effectively removed under anaerobic condition, while the total aromatic amines and organic fraction could be mainly reduced under aerobic conditions. NO(3)(-)--N, COD, BOD(5,) aromatic amine, HPLC and GC analyses showed that Direct Black 38 could be chiefly mineralized by the sequential system. The toxicity levels were determined using three different test organism (ATA-anaerobic toxicity, respiration/inhibition and Daphnia magna tests) through the continuous operation of anaerobic/aerobic sequential system treating Direct Black 38 dye containing synthetic wastewater. Feed and anaerobic effluent had greater toxicity than the aerobic effluent after mineralization of dye.  相似文献   
224.
In this study, the feasibility of the anaerobic co-digestion of a mixed industrial sludge with municipal solid wastes (MSW) was investigated in three simulated anaerobic landfilling bioreactors during a 150-day period. All of the reactors were operated with leachate recirculation. One of them was loaded only with MSW (control reactor); the second reactor was loaded with mixed industrial sludge and MSW, the weight ratio of the MSW to mixed industrial sludge was 1:1 (based on dry solid) (Run 1); the third reactor was loaded with mixed industrial sludge and MSW, the weight ratio of the MSW to mixed industrial sludge was 1:2 (based on dry solid) (Run 2). The VFA concentrations decreased significantly in Run 1 and Run 2 reactors at the end of 150 days. The pH values were higher in Run 1 and Run 2 reactors compared to control reactor. The differences between leachate characteristics, the biodegradation and the bioefficiency of the reactors were compared. The NH(4)-N concentrations released to leachate from mixed sludge in Run 1 and Run 2 reactors were lower than that of control reactor. The BOD(5)/COD ratios in Run 1 and Run 2 reactors were lower than that of control reactor at the end of 150 days. Cumulative methane gas productions and methane percentages were higher in Run 1 and Run 2 reactors. Reductions in waste quantity, carbon percentage and settlement of the waste were better in Run 1 and Run 2 reactors compared to control reactor at the end of 150 days. Furthermore, TN and TP removals in waste were higher in reactors containing industrial sludge compared to control. The toxicity test results showed that toxicity was observed in reactors containing industrial mixed sludge.  相似文献   
225.
The question of the nature and stability of polar ordering in nanoscale ferroelectrics is examined with colloidal nanocrystals of germanium telluride (GeTe). We provide atomic-scale evidence for room-temperature polar ordering in individual nanocrystals using aberration-corrected transmission electron microscopy and demonstrate a reversible, size-dependent polar-nonpolar phase transition of displacive character in nanocrystal ensembles. A substantial linear component of the distortion is observed, which is in contrast with theoretical reports predicting a toroidal state.  相似文献   
226.
Intracellular structures of biological cells can be disturbed by exposure to nanosecond pulsed electric field (nsPEF). A microchamber-based delivery system mounted on a microscope setup for real-time exposure to nsPEF is studied in this paper. A numerical and experimental characterization of the delivery system is performed both in frequency and time domains. The microchamber delivery system presents a high impedance compared to classical 50 Ω loads. Its frequency behavior and limits are investigated using an in-house finite-difference time-domain (FDTD) simulator and through experimental measurements. High-voltage measurements for two nsPEF generators are carried out. The applied pulse voltage measured across the microchamber electrodes is ~1 kV, corresponding to ~10 MV/m electric fields in the microchamber. Depending on the nsPEF generator used, the measured pulse durations are equal to 3.0 and 4.2 ns, respectively. The voltage distribution provided by FDTD simulations indicates a good level of homogeneity across the microchamber electrodes. Experimental results include permeabilization of biological cells exposed to 3.0-ns, 10-MV/m PEFs.  相似文献   
227.
A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.  相似文献   
228.
The possibility of setting up a positron emission tomography (PET) facility with a cyclotron and radiopharmaceutical laboratory in situ, at a feasible price and in a very restricted space, has led to a steady increase both in the use of the PET technique in diagnostic clinical routine imaging and in the number of cyclotrons for drug production. Owing to the progress made in the PET procedures, it is now possible to have not only a highly innovative system of diagnostic examination, with a remarkable improvement in the diagnostic quality and patient care, but also a considerable increase in the number of daily examinations. In this paper, the authors show how the acquired know-how, with respect to radioprotection, has applied to the planning, running and management of the PET/CT unit, installed in the Imaging Diagnostic Department of the Policlinico Tor Vergata (PTV), at Tor Vergata University, Rome.  相似文献   
229.
The development of biodegradable materials for internal fracture fixation is of great interest, as they would both eliminate the problem of stress shielding and obviate the need for a second operation to remove fixation devices. Preliminary investigations for the production of degradable fiber reinforced polymer composite materials are detailed. Composites were produced of phosphate invert glass fibers of the glass system P2O5–CaO–MgO–Na2O–TiO2, which showed a low solubility in previous work. The fibers were embedded into a matrix of a degradable organic polymer network based on methacrylate-modified oligolactide. Fracture behavior, bending strength and elastic modulus were evaluated during 3-point bending tests and the fracture surface of the composites was investigated using a scanning electron microscope. Short-term biocompatibility was tested in an FDA/EtBr viability assay using MC3T3-E1 murine pre-osteoblast cells and showed a good cell compatibility of the composite materials. Results suggested that these composite materials are biocompatible and show mechanical properties which are of interest for the production of degradable bone fixation devices.  相似文献   
230.
Background: marijuana, the common name for cannabis sativa preparations, is one of the most consumed drug all over the world, both at therapeutical and recreational levels. With the legalization of medical uses of cannabis in many countries, and even its recreational use in most of these, the prevalence of marijuana use has markedly risen over the last decade. At the same time, there is also a higher prevalence in the health concerns related to cannabis use and abuse. Thus, it is mandatory for oral healthcare operators to know and deal with the consequences and effects of cannabis use on oral cavity health. This review will briefly summarize the components of cannabis and the endocannabinoid system, as well as the cellular and molecular mechanisms of biological cannabis action in human cells and biologic activities on tissues. We will also look into oropharyngeal tissue expression of cannabinoid receptors, together with a putative association of cannabis to several oral diseases. Therefore, this review will elaborate the basic biology and physiology of cannabinoids in human oral tissues with the aim of providing a better comprehension of the effects of its use and abuse on oral health, in order to include cannabinoid usage into dental patient health records as well as good medicinal practice. Methods: the paper selection was performed by PubMed/Medline and EMBASE electronic databases, and reported according to the PRISMA guidelines. The scientific products were included for qualitative analysis. Results: the paper search screened a total of 276 papers. After the initial screening and the eligibility assessment, a total of 32 articles were considered for the qualitative analysis. Conclusions: today, cannabis consumption has been correlated to a higher risk of gingival and periodontal disease, oral infection and cancer of the oral cavity, while the physico-chemical activity has not been completely clarified. Further investigations are necessary to evaluate a therapeutic efficacy of this class of drugs for the promising treatment of several different diseases of the salivary glands and oral diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号