首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1230篇
  免费   30篇
  国内免费   7篇
电工技术   9篇
综合类   1篇
化学工业   304篇
金属工艺   51篇
机械仪表   26篇
建筑科学   27篇
矿业工程   1篇
能源动力   60篇
轻工业   62篇
水利工程   3篇
石油天然气   1篇
无线电   152篇
一般工业技术   342篇
冶金工业   97篇
原子能技术   4篇
自动化技术   127篇
  2024年   13篇
  2023年   23篇
  2022年   14篇
  2021年   32篇
  2020年   22篇
  2019年   21篇
  2018年   33篇
  2017年   27篇
  2016年   35篇
  2015年   21篇
  2014年   54篇
  2013年   81篇
  2012年   59篇
  2011年   59篇
  2010年   41篇
  2009年   50篇
  2008年   51篇
  2007年   43篇
  2006年   36篇
  2005年   27篇
  2004年   18篇
  2003年   32篇
  2002年   25篇
  2001年   26篇
  2000年   25篇
  1999年   27篇
  1998年   32篇
  1997年   21篇
  1996年   16篇
  1995年   23篇
  1994年   16篇
  1993年   18篇
  1992年   17篇
  1991年   21篇
  1990年   13篇
  1989年   12篇
  1988年   13篇
  1987年   13篇
  1986年   8篇
  1985年   18篇
  1984年   17篇
  1983年   11篇
  1982年   11篇
  1981年   13篇
  1980年   10篇
  1979年   14篇
  1978年   8篇
  1976年   12篇
  1975年   9篇
  1971年   6篇
排序方式: 共有1267条查询结果,搜索用时 15 毫秒
91.
Gold nanoparticle inks were investigated as a potential candidate for lead-free packaging applications. Inks consisted of surfactant-passivated nanoparticles dissolved in a solvent. Optimized gold inks are able to sinter at temperatures as low as 120°C and achieve conductivities of up to 70% of bulk. Once sintered, the metallic structure reverts to bulk-like properties and approaches bulk reliability and performance. Thus nanoparticle-based solders would operate at much lower homologous temperatures as compared with alloy-based solders. Nanoparticle inks under investigation were sintered at 180°C. The resulting material exhibited a resistivity of 5 μΩ cm, which is significantly lower than those of Pb-Sn and Sn-Ag-Cu. Electromigration studies were carried out and time to failure was investigated as a function of temperature. Electromigration activation energy was calculated through Black’s equation to be 0.52 eV, which is consistent with surface/grain boundary diffusion. These studies suggest that nanoparticle-ink-based films show excellent robustness, due to their irreversible conversion to bulk-like materials. Nanoparticle inks are thus promising candidates for next-generation lead-free solders.  相似文献   
92.
Stress-relaxation studies on eutectic Sn-Ag solder (Sn-3.5Ag in wt.%) joints were carried out at various temperatures after imposing different amounts and rates of simple shear strain. Stress-relaxation parameters were evaluated by subjecting geometrically realistic solder joints with a nominal joint thickness of ∼100 μm and a 1 mm × 1 mm solder-joint area. The peak shear stress during preloading and residual shear stress resulting from stress relaxation were higher at the low-temperature extremes than those at high-temperature extremes. Also, those values increased with increasing simple shear strain and the rate of simple shear strain imposed prior to the stress-relaxation events. The relaxation stress is insensitive to simple shear strain at 150°C, but at lower temperatures, a faster rate of simple shear strain causes a higher relaxed-stress value. The resulting deformation structures observed from the solder-joint side surfaces were also strongly affected by these parameters. At high temperature, grain-boundary sliding effects were commonly observed. At low temperature, intense shear bands dominated, and no grain-boundary sliding effects were observed.  相似文献   
93.
To better understand the effect of repeated reverse stress in solder joints, a new testing method was developed. Tin-silver solder joints were fabricated, constrained between Cu blocks, and then subjected to repeated shear loading in a tensile tester. Constant strain amplitudes were applied to simulate service conditions. However, large loads were used to accelerate the damage accumulation. Microstructural features of the damage were very similar to those found with studies on thermomechanical fatigue (TMF) of small, single shear lap samples. Concentrated-shear banding or striations were observed to form along Sn dendrites. The load behavior of the solder with each cycle and during hold times at the extreme strain amplitude was consistent with damage accumulating with each successive cycle. Effects of strain amplitude, hold times at the stress extremes, number of cycles, and solder-joint thickness were found to play significant roles on the stress-strain behavior and surface damage.  相似文献   
94.
In this letter, we propose a tandem broadcast selective repeat (SR) ARQ scheme for satellite communications. In the scheme, the satellite operates in a store and forward manner, which minimizes the effect of the large round-trip delay. Numerical results show that the proposed scheme would largely improve the system performance  相似文献   
95.
Development of nano-composite lead-free electronic solders   总被引:1,自引:0,他引:1  
Inert, hybrid inorganic/organic, nano-structured chemicals can be incorporated into low melting metallic materials, such as lead-free electronic solders, to achieve desired levels of service performance. The nano-structured materials technology of polyhedral oligomeric silsesquioxanes (POSS), with appropriate organic groups, can produce suitable means to promote bonding between nano-reinforcements and the metallic matrix. The microstructures of lead-free solder reinforced with surface-active POSS tri-silanols were evaluated using scanning electron microscopy (SEM). Wettability of POSS-containing lead-free solders to copper substrate was also examined. Steady-state deformation of solder joints made of eutectic Sn-Ag solder containing varying weight fractions of POSS of different chemical moieties were evaluated at different temperatures (25°C, 100°C, and 150°C) using a rheometric solids analyzer (RSA-III). Mechanical properties such as shear stress versus simple shear-strain relationships, peak shear stress as a function of rate of simple shear strain, and testing temperature for such nano-composite solders are reported. The service reliability of joints made with these newly formulated nano-composite solders was evaluated using a realistic thermomechanical fatigue (TMF) test profile. Evolution of microstructures and residual mechanical property after different extents of TMF cycles were evaluated and compared with joints made of standard, unreinforced eutectic Sn-Ag solder.  相似文献   
96.
Tea processing is an energy intensive operation requiring both thermal and electrical energy. Hot air at a temperature of 100–130°C for tea drying and withering has been obtained in the past by burning coal or firewood. Over the last four years, roof integrated solar air heating systems have been introduced in some of the tea factories of south India, as a partial energy source. This paper aims to present the economical analysis of one such system: a 212 m2 collector area system that has been in operation for 2.75 yr. The system has reduced specific fuel consumption for tea production from 0.932 to 0.71 kg/kg dmt (drier mouth tea), which represents a fuel savings of approximately 25%. The economic analysis considered the annual investment cost and return cost and included concessions offered by the Government. It shows a payback period of from two to four years, depending upon whether the company is profit making or non-profit making. This work has helped to establish the economic viability of this method.  相似文献   
97.
The goals of the present study are to establish an in vitro co‐culture model of osteoblast and osteoclast function and to quantify the resulting bone remodeling. The bone is tissue engineered using well‐defined silk protein biomaterials in 2D and 3D formats in combination with human cells. Parathyroid hormone (PTH) and glucose‐dependent insulinotropic peptide (GIP) are selected because of their roles in bone remodeling for expression in tethered format on human mesenchymal stem cells (hMSCs). The cell‐modified biomaterial surfaces are reconstructed from scanning electron microscopy images into 3D models for quantitative measurement of surface characteristics. Increased calcium deposition and surface roughness are found in 3D surface models of silk protein films remodeled by co‐cultures containing tethered PTH, and decreased surface roughness is found for the films remodeled by tethered GIP co‐cultures. Increased surface roughness is not found in monocultures of hMSCs expressing tethered PTH, suggesting that osteoclast‐osteoblast interactions in the presence of PTH signaling are responsible for the increased mineralization. These data point towards the design of in vitro bone models in which osteoblast‐osteoclast interactions are mimicked for a better understanding of bone remodeling.  相似文献   
98.
Microstructural studies of thermomechanically fatigued actual electronic components consisting of metallized alumina substrate and tinned copper lead, soldered with Sn-Ag or 95.5Ag/4Ag/0.5Cu solder were carried out with an optical microscope and environmental scanning electron microscope (ESEM). Damage characterization was made on samples that underwent 250 and 1000 thermal shock cycles between −40°C and 125°C, with a 20 min hold time at each extreme. Surface roughening and grain boundary cracking were evident even in samples thermally cycled for 250 times. The cracks were found to originate on the free surface of the solder joint. With increased thermal cycles these cracks grew by grain boundary decohesion. The crack that will affect the integrity of the solder joint was found to originate from the free surface of the solder very near the alumina substrate and progress towards and continue along the solder region adjacent to the Ag3Sn intermetallic layer formed with the metallized alumina substrate. Re-examination of these thermally fatigued samples that were stored at room temperature after ten months revealed the effects of significant residual stress due to such thermal cycles. Such observations include enhanced surface relief effects delineating the grain boundaries and crack growth in regions inside the joint.  相似文献   
99.
Solder joints used in electronic applications undergo reflow operations. Such operations can affect the solderability, interface intermetallic layer formation and the resultant solder joint microstructure. These in turn can affect the overall mechanical behavior of such joints. In this study the effects of reflow on solderability and mechanical properties were studied. Nanoindentation testing (NIT) was used to obtain mechanical properties from the non-reflow (as-melted) and multiple reflowed solder materials. These studies were carried out with eutectic Sn-3.5Ag solders, with or without mechanically added Cu or Ag reinforcements, using Cu substrates. Microstructural analysis was carried out on solder joints made with the same solders using copper substrate.  相似文献   
100.
A study of the mobility of a novel modulation doped heterostructure in which the channel region is made of low-temperature molecular beam epitaxially grown GaAs (LT-GaAs) and all other layers are grown at normal temperatures is presented for the first time. The resistivity of the as-grown samples(in- situ annealed) is very high, as is that of single layers of bulk LT-GaAs. However, in the presence of light, the resistivity of the LT-GaAs modulation-doped field effect transistor (MODFET) is significantly lower, facilitating reliable Hall measurements. We speculate that the observed decrease in resistivity of the LT-GaAs MODFET is due to the formation of a two-dimensional electron gas (2DEG) at the heterointerface under illumination. A number of samples grown under different growth conditions were investigated. Mobilities for these samples were found to be in the range of 250 to 750 cm2Vs at 300K and ∼3000 to 5500 cm2Vs at 77K. A first-order computer simulation was implemented to calculate the mobility of the 2DEG using the relaxation-time approximation to solve the Boltzmann equation, taking into account different scattering mechanisms. Scattering by the arsenic clusters and by ionized impurities in the LT-GaAs MODFET channel are found to be the two dominant mechanisms limiting the mobility of the LT-GaAs MODFET samples. Experimental values are in good agreement with theoretical results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号