首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   23篇
  国内免费   2篇
化学工业   50篇
金属工艺   9篇
机械仪表   5篇
建筑科学   9篇
能源动力   13篇
轻工业   19篇
水利工程   1篇
石油天然气   2篇
无线电   12篇
一般工业技术   25篇
冶金工业   3篇
自动化技术   27篇
  2023年   4篇
  2022年   6篇
  2021年   10篇
  2020年   7篇
  2019年   7篇
  2018年   18篇
  2017年   9篇
  2016年   14篇
  2015年   13篇
  2014年   6篇
  2013年   12篇
  2012年   13篇
  2011年   15篇
  2010年   7篇
  2009年   10篇
  2008年   8篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2002年   1篇
  1999年   1篇
  1996年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
131.
In this study, the working principles and the theoretical background of a new method to measure the viscoelastic properties of dough in the fermentation process are presented. During measurements, the dough sample was placed between a stationary bottom plate and an oscillating top plate and squeezed at random frequencies ranging from 10 to 100,000 rad/s. By measuring the required force and velocity of oscillations, the mechanical impedance of the samples, defined as the ratio of the force to oscillation velocity, was determined during fermentation. The measured mechanical impedance was used to calculate viscoelastic properties such as elastic and loss moduli of the dough samples. The nondestructive quick measurements and data covering a wide range of frequencies are some of the main advantages of the method. Furthermore, the described instrument can be easily affixed to the commonly available texture analyzer type equipments.  相似文献   
132.
Magnetic macroporous polymer monoliths have been prepared using styrene/divinylbenzene (S/DVB) high internal phase emulsions (HIPEs) as templates. Humic acid surface modified iron oxide magnetic nanoparticles (Fe3O4@HA) have been used to prepare magnetic emulsion templates. The effect of magnetic particle concentration has been investigated by changing the ratio of Fe3O4@HA nanoparticles in the continuous phase. Highly macroporous polymers with magnetic response were obtained by the removal of the internal phase after the curing of emulsions at 80 °C. Fe3O4@HA particles were characterized by XRD and FTIR. The porosity, pore morphology and magnetic properties of the macroporous polymers were characterized as a function of the Fe3O4@HA concentration by scanning electron microscopy (SEM), Brunauer–Emmet–Teller (BET) molecular adsorption method and vibrating sample magnetometry (VSM), respectively. BET and VSM measurements demonstrated that the specific surface area and the saturation magnetization of the polymer monoliths were changed according to the Fe3O4@HA concentration between 8.77–35.08 m2 g?1 and 0.63–11.79 emu g?1, respectively. Resulting magnetic monoliths were tested on the adsorption of Hg(II) and atomic absorption spectroscopy (AAS) was used to calculate the adsorption capacities. The maximum adsorption capacity of the magnetic monoliths was calculated to be 20.44 mmol g?1 at pH 4.  相似文献   
133.
This study presents voltage-dependent profile of interface traps in Au/n-Si structure with 2% graphene–cobalt-doped Ca3Co4Ga0.001Ox interfacial layer. Admittance measurements revealed capacitance-voltage (C-V) plots with typical regions of a metal–insulator–semiconductor structure through inversion, depletion, and accumulation regions. Frequency dispersion is observed in C-V plots and such behavior was explained with excess capacitance, which is associated with the density of interface traps (Dit) in the structure because larger Dit is observed when the measurements are held at low frequencies due to the fact that traps can follow the signal depending on their lifetime. Dit was also obtained using conductance method, which also provided lifetime of the traps. The difference between the values of Dit was attributed to the difference in extraction methods. Obtained results showed that Au/2% graphene–cobalt-doped Ca3Co4Ga0.001Ox/n-Si structure yields promising electrical characteristics when the structure is operated at high frequencies. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48399.  相似文献   
134.
Alginate has an extensive usage in the immobilization of many cell types. Although they have high biocompatibility, commercial alginates contain various degrees of contaminants such as polyphenols, endotoxins and proteins. Thus, these alginates show cytotoxicity against sensitive cell types such as hybridoma cells. In the studies so far, owing to this fact, commercially purchased high-priced ultrapure alginates have been used in the immobilization of hybridoma cells for monoclonal antibody production. However in this study, as a novelty, low-priced commercial alginate was purified, and then the cultivation of alginate-immobilized hybridoma cells was performed for feasible monoclonal antibody production. Low-priced commercial alginate was purified with a profitability ratio of 40%. Then, an optimized immobilization procedure was conducted effectively by using the purified alginate. During more than 25 days of cultivation, serum concentration was kept low, and approximately 2 times greater monoclonal antibody production was achieved, in comparison with its free suspended counterpart. The results showed that the efficiency of monoclonal antibody production via alginate-immobilized hybridoma cultivation can be increased by performing a proved in-house purification method. By shedding light on the efficiency of the in-house purification method, the results also indicated a feasible way of monoclonal antibody production.  相似文献   
135.
This paper studies the torsional wave dispersion in the hollow bi-material compounded cylinder with finite initial strains. The investigations are carried out within the scope of the piecewise homogeneous body model with the use of the three-dimensional linearized theory of elastic waves in initially stressed bodies. The mechanical relations of the materials of the cylinders are described through the harmonic potential. The numerical results on the influence of the initial stretching or compression of the cylinders along the torsional wave propagation direction are presented and discussed  相似文献   
136.
Erroneous information from sensors affect process monitoring and control. An algorithm with multiple model identification methods will improve the sensitivity and accuracy of sensor fault detection and data reconciliation (SFD&DR). A novel SFD&DR algorithm with four types of models including outlier robust Kalman filter, locally weighted partial least squares, predictor-based subspace identification, and approximate linear dependency-based kernel recursive least squares is proposed. The residuals are further analyzed by artificial neural networks and a voting algorithm. The performance of the SFD&DR algorithm is illustrated by clinical data from artificial pancreas experiments with people with diabetes. The glucose-insulin metabolism has time-varying parameters and nonlinearities, providing a challenging system for fault detection and data reconciliation. Data from 17 clinical experiments collected over 896 h were analyzed; the results indicate that the proposed SFD&DR algorithm is capable of detecting and diagnosing sensor faults and reconciling the erroneous sensor signals with better model-estimated values. © 2018 American Institute of Chemical Engineers AIChE J, 65: 629–639, 2019  相似文献   
137.
138.
Polyamide 66 (PA 66)/impact modifier blends and polyamide/organoclay binary and PA 66/organoclay/impact modifier ternary nanocomposites were prepared by the melt‐compounding method, and the effects of the mixing sequences on the morphology and mechanical and flow properties were investigated. Lotader AX8840 and Lotader AX8900 were used as impact modifiers. The concentrations of the impact modifiers and the organoclay (Cloisite 25A) were maintained at 2 and 5 wt %, respectively. Both the binary and ternary nanocomposites displayed high tensile strength and Young's modulus values compared to the PA 66/impact modifier blends. Decreases occurred in the strength and stiffness of the binary nanocomposites upon incorporation of the elastomeric materials into the polymeric matrix. In general, the mixing sequence in which all three ingredients were added simultaneously and extruded twice (the All‐S mixing sequence) exhibited the most enhanced mechanical properties in comparison with the mixing sequences in which two of the components were extruded in the first extrusion step and the third ingredient was added in the second extrusion step. The mechanical test results were in accordance with the organoclay dispersion. The impact strength was highly affected by the elastomeric domain sizes, interdomain distances, interfacial interactions, and organoclay delamination. The smallest elastomeric domain size was obtained for the All‐S mixing sequence, whereas the elastomeric domain sizes of the other mixing sequences were quite close to each other. Drastic variations were not observed between the melt viscosities of the ternary nanocomposites prepared with different mixing sequences. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
139.
In this study, poly(DMAEMA–AMPS–HEMA) terpolymer/montmorillonite nanocomposite hydrogels were prepared by in situ polymerization technique using 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA), 2-acrylamido-2-methlypropane sulfonic acid (AMPS), 2-hydroxyethyl methacrylate (HEMA) monomers in clay suspension media. N,N-methylenebisacrylamide (NMBA) was used as crosslinker and potassium persulfate/potassium bisulfide were used as initiator and accelerator pair. The water absorption capacities and acidic dye (indigo carmine) adsorption properties of the nanocomposite hydrogels were investigated. Adsorption properties of the hydrogels were investigated at different conditions such as different initial dye concentration and contact time. The concentrations of the dyes were determined using UV/Vis Spectrophotometer at wavelength 610 nm. Langmuir and Freundlich isotherm models were used to describe adsorption data and the results clarified that these models were the best-fit for the adsorption of indigo carmine.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号