首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30186篇
  免费   1021篇
  国内免费   278篇
电工技术   481篇
综合类   33篇
化学工业   4759篇
金属工艺   1061篇
机械仪表   708篇
建筑科学   447篇
矿业工程   48篇
能源动力   1492篇
轻工业   1212篇
水利工程   166篇
石油天然气   100篇
武器工业   1篇
无线电   2777篇
一般工业技术   4684篇
冶金工业   1671篇
原子能技术   276篇
自动化技术   11569篇
  2024年   77篇
  2023年   427篇
  2022年   998篇
  2021年   1178篇
  2020年   927篇
  2019年   978篇
  2018年   1253篇
  2017年   996篇
  2016年   965篇
  2015年   628篇
  2014年   1080篇
  2013年   1768篇
  2012年   1695篇
  2011年   4180篇
  2010年   2036篇
  2009年   1875篇
  2008年   1434篇
  2007年   1191篇
  2006年   943篇
  2005年   955篇
  2004年   822篇
  2003年   830篇
  2002年   494篇
  2001年   199篇
  2000年   192篇
  1999年   211篇
  1998年   422篇
  1997年   287篇
  1996年   263篇
  1995年   199篇
  1994年   180篇
  1993年   169篇
  1992年   127篇
  1991年   158篇
  1990年   125篇
  1989年   113篇
  1988年   103篇
  1987年   109篇
  1986年   101篇
  1985年   102篇
  1984年   110篇
  1983年   93篇
  1982年   74篇
  1981年   81篇
  1980年   56篇
  1979年   46篇
  1978年   39篇
  1977年   36篇
  1976年   45篇
  1975年   19篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
The complex local mean decomposition   总被引:3,自引:0,他引:3  
The local mean decomposition (LMD) has been recently developed for the analysis of time series which have nonlinearity and nonstationarity. The smoothed local mean of the LMD surpasses the cubic spline method used by the empirical mode decomposition (EMD) to extract amplitude and frequency modulated components. To process complex-valued data, we propose complex LMD, a natural and generic extension to the complex domain of the original LMD algorithm. It is shown that complex LMD extracts the frequency modulated rotation and envelope components. Simulations on both artificial and real-world complex-valued signals support the analysis.  相似文献   
992.
A new incrementally growing neural network model, called the growing fuzzy topology ART (GFTART) model, is proposed based on integrating the conventional fuzzy ART model with the incremental topology-preserving mechanism of the growing cell structure (GCS) model. This is in addition, to a new training algorithm, called the push-pull learning algorithm. The proposed GFTART model has two purposes: First, to reduce the proliferation of incrementally generated nodes in the F2 layer by the conventional fuzzy ART model based on replacing each F2 node with a GCS. Second, to enhance the class-dependent clustering representation ability of the GCS model by including the categorization property of the conventional fuzzy ART model. In addition, the proposed push-pull training algorithm enhances the cluster discriminating property and partially improves the forgetting problem of the training algorithm in the GCS model.  相似文献   
993.
994.
High sensitivity to chemical species of sub-micron gap Suspended-Gate FETs (more than 200 mV/pH for example) is explained from the charge distribution induced by the high field in the sub-micronic gap under the gate-bridge. Modeling of Metal-Electrolyte-Insulator-Silicon (MEIS) capacitor, which is the basic vertical structure of the transistor, is performed to highlight this effect through the response to the pH change of the solution filling the gap. The analytical model is based on the 2D-numerical resolution of Poisson's equation. The response of quasi-static C(V) plots versus pH is simulated using both electrolyte charge distribution and site-binding theory considering the influence of sites densities on silicon nitride. Device modeling and simulated/experimental electrical characteristics are presented. Effect of the gap thickness on the pH sensitivity is also discussed in this study.  相似文献   
995.
NOx adsorption behavior on LaFeO3 (LFO) and LaMnO3+δ (LMO) was characterized using temperature controlled methods and mass spectrometry. Temperature program desorption revealed decomposition of complex surface species formation when NO or NO2 was adsorbed on LFO and LMO. LFO exhibited higher adsorption capacity for NOx species than LMO and was shown to be more active for NOx surface conversion. Both effects were attributed to the different B-site cations, with iron in LFO in the 3+ valence state, and manganese in LMO in the 3+ and 4+ valence states. Results from diffuse reflectance infrared spectroscopy were used to identify specific nitrite and nitrate species that are formed on the surfaces of LFO and LMO at room temperature. Temperature programmed reaction revealed a complex NO2 decomposition mechanism to NO and O2 for LFO and LMO in which the formation of nitrite and nitrate species serve as intermediates below ∼600 °C. NOx sensing mechanisms were considered and predicted based on the types and quantities of surface species formed.  相似文献   
996.
Microworld barcoding has become a promising tool for cell biology. Individual and subpopulation cell tracking is of great interest to evaluate cell behaviour. Nowadays, many micrometer and even nanometer size silicon structures can be fabricated using microelectronics techniques. In this work we report for first time the development of 3D barcodes based on silicon substrate. The proposed silicon micromachining technology based on deep reactive ion etching (DRIE) allows to obtain micrometer-sized cylindrical structures with vertical etch profile that defines a bit = 1 and non-vertical etch profile that defines a bit = 0. Although this technology will allow more than 15 bits representation, only 4-8 bits are necessary for cell labelling. The results of this work show that DRIE has become a versatile technique to produce high aspect 3D biocompatible silicon-based barcodes structures for cell studies.  相似文献   
997.
By exploiting the electrostatic interaction between positively charged pyrrole cation radicals and negatively charged graphene oxide (GO) sheets, we prepared polypyrrole/graphene oxide (PPy/GO) composite films by a one-step electrochemical process. We studied the effects of the polymerization current density and the GO content in electrolyte on the formation of PPy/GO coatings onto platinum neural microelectrode sites. As compared with pure PPy film, PPy/GO coatings show a rougher surface feature with micrometer-scale bulges. The impedance of the PPy/GO coated Pt electrode is only about 10% of the bare Pt electrode at the biological relevant 1 kHz, while the charge capacity density is more than two orders of the magnitude of the bare Pt electrode. Moreover, the PPy/GO coated Pt electrodes show higher performance than the PPy coated electrodes for the application of neural probe.  相似文献   
998.
This study reports a microfluidic cell culture chip encompassing 36 microbioreactors for high throughput perfusion 3-dimensional (3D) cell culture-based chemosensitivity assays. Its advantages include the capability for multiplexed medium delivery, and the function for both efficient and high throughput micro-scale 3D culture construct preparation and loading. The results showed that the proposed medium pumping mechanism was able to provide a uniform pumping rates ranging from 1.2 to 3.9 μl h−1. In addition, the simple cell/hydrogel loading scheme has been proven to be able to carry out 3D cell culture construct preparation and loading precisely and efficiently. Furthermore, a chemosensitivity assay was successfully demonstrated using the proposed cell culture chip. The results obtained were also compared with the same evaluation based on a conventional 2D monolayer cell culture. It can be concluded that the choice of cell culture format can result in different chemosensitivity evaluation results. Overall, because of the nature of miniaturized perfusion 3D cell culture, the cell culture chip not only can provide stable, well-defined and more biologically relevant culture environments, but it also features low consumption of research resources. All these traits are found particularly useful for high-precision and high-throughput 3D cell culture-based assays.  相似文献   
999.
We report on a droplet-producing microfluidic system with electrical impedance-based detection. The microfluidic devices are made of polydimethylsiloxane (PDMS) and glass with thin film electrodes connected to an impedance-monitoring circuit. Immiscible fluids containing the hydrophobic and hydrophilic phases are injected with syringe pumps and spontaneously break into water-in-oil droplet trains. When a droplet passes between a pair of electrodes in a medium having different electrical conductivity, the resulting impedance change signals the presence of the particle for closed-loop feedback during processing. The circuit produces a digital pulse for input into a computer control system. The droplet detector allows estimation of a droplet's arrival time at the microfluidic chip outlet for dispensing applications. Droplet detection is required in applications that count, sort, and direct microfluidic droplets. Because of their low cost and simplicity, microelectrode-based droplet detection techniques should find applications in digital microfluidics and in three-dimensional printing technology for rapid prototyping and biotechnology.  相似文献   
1000.
The temperature dependence of the green upconverted emission from the two thermally coupled 2H11/2 and 4S3/2 levels of the Er3+ ion in a fluorotellurite glass has been analyzed as a function of the optically active ion concentration in order to check its availability as a temperature sensor. The infrared-to-green upconverted emission have been observed by the naked eyes after a cw laser diode excitation at 800 nm. The fluorescence intensity ratio between the thermally coupled emitting levels as well as the temperature sensitivity has been experimentally obtained up to 540 K. A better behaviour as a temperature sensor has been obtained for the less Er3+ concentrated glass with a maximum sensitivity of 54 × 10−4 K−1 at 540 K, one of the highest found in rare-earth doped transparent materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号