首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7676篇
  免费   365篇
  国内免费   48篇
电工技术   218篇
综合类   20篇
化学工业   1647篇
金属工艺   159篇
机械仪表   186篇
建筑科学   238篇
矿业工程   8篇
能源动力   512篇
轻工业   763篇
水利工程   91篇
石油天然气   159篇
武器工业   4篇
无线电   943篇
一般工业技术   1361篇
冶金工业   452篇
原子能技术   77篇
自动化技术   1251篇
  2024年   17篇
  2023年   189篇
  2022年   432篇
  2021年   526篇
  2020年   379篇
  2019年   375篇
  2018年   491篇
  2017年   337篇
  2016年   378篇
  2015年   234篇
  2014年   360篇
  2013年   589篇
  2012年   391篇
  2011年   443篇
  2010年   281篇
  2009年   241篇
  2008年   227篇
  2007年   208篇
  2006年   172篇
  2005年   153篇
  2004年   124篇
  2003年   102篇
  2002年   117篇
  2001年   62篇
  2000年   65篇
  1999年   76篇
  1998年   123篇
  1997年   107篇
  1996年   71篇
  1995年   78篇
  1994年   51篇
  1993年   50篇
  1992年   40篇
  1991年   23篇
  1990年   28篇
  1989年   42篇
  1988年   46篇
  1987年   28篇
  1986年   28篇
  1985年   42篇
  1984年   49篇
  1983年   41篇
  1982年   26篇
  1981年   21篇
  1980年   28篇
  1979年   23篇
  1978年   18篇
  1977年   21篇
  1976年   30篇
  1974年   16篇
排序方式: 共有8089条查询结果,搜索用时 15 毫秒
991.
Curcumin and other three curcuminoids (bisdemethoxycurcumin, α-chlorocurcumin and α-methylcurcumin) were synthesized. Fourier transform infrared spectroscopy, Fluorescence quantum yields, AFM analysis and image surface profiles were characterized. All compounds possessed electron donor moieties at both ends of the conjugated π-system and an electron acceptor moiety in the middle of the molecules (D-A-D system) and should exhibit different optical properties depending on substituents on the benzene rings. The third order nonlinear optical properties of the curcuminoids have been investigated by z-scan technique. The optical response was characterized by measuring the refractive index (n2) of the derivatives of curcumin using the Z-scan technique. The compounds showed negative and large nonlinear refractive index values of the order of 10?7 cm2/W and reverse saturable absorption with high values of the nonlinear absorption coefficient of the order of 10?4 cm/W. The nonlinear refractive index was found to vary with the different compound. The optical constants of the different compound films were studied and the dispersion of the refractive index was discussed in terms of the Wemple-DiDomenico single oscillator model. The photo-physical properties of these compounds are compared to those of native curcumin, in order to provide a rationale to the design of samples with molecular structures optimized for a photosensitizer. These types of materials may be considering new photonic applications.  相似文献   
992.
The predicted quasiparticle energy gap of more than 1 eV in sub‐6 nm graphene nanoribbons (GNRs) is elusive, as it is strongly suppressed by the substrate dielectric screening. The number of techniques that can produce suspended high‐quality and electrically contacted GNRs is small. The helium ion beam milling technique is capable of achieving sub‐5 nm patterning; however, the functional device fabrication and the electrical characteristics are not yet reported. Here, the electrical transport measurement of suspended ≈6 nm wide mono‐ and bilayer GNR functional devices is reported, which are obtained through sub‐nanometer resolution helium ion beam milling with controlled total helium ion budget. The transport gap opening of 0.16–0.8 eV is observed at room temperature. The measured transport gap of the different edge orientated GNRs is in good agreement with first‐principles simulation results. The enhanced electron–electron interaction and reduced dielectric screening in the suspended quasi‐1D GNRs and anti‐ferromagnetic coupling between opposite edges in the zigzag GNRs substantiate the observed large transport gap.  相似文献   
993.
Benzene is one of the aromatic hydrocarbons co-absorbed with acid gases during amine scrubbing that contribute to deactivation of catalyst in the Claus process. The present work attempts to modify the porous carbon surface through nitrogen group functionalization utilizing melamine as the nitrogen source, adopting Design of Experiments (DOE) with concentration of melamine, duration of impregnation and temperature of impregnation being the process variables, while BET surface area was the response variable. The surface modified samples were subjected to benzene adsorption. The optimal nitrogen content that had minimal pore damage was found to be less than 4.3%, with concentration of melamine being the most significant variable. Surface nitrogen functionalization reduced the surface area whereas the benzene adsorption capacity increased. Benzene adsorption capacity as high as 14.72 mmol/g was recorded at 45°C at a pressure of 235 mbar. Such high adsorption capacities have not been reported in open literature and the nitrogen functionalization augmented the adsorption to the tune of 20 to 30% at a pressure of 100 mbar, and only up to 10 to 15% at higher pressures. The adsorption isotherms as well as the kinetics of adsorption were modelled using the well-known popular models. Further, successful regeneration of the surface modified adsorbents were ensured through adsorption/desorption cycle experiments.  相似文献   
994.
The pyrolysis of different plastic waste types such as low density polyethylene (LDPE), high density polyethylene (HDPE), polypropylene (PP), polyethylene terephthalate (PET) and polystyrene (PS) for producing multi-walled carbon nanotubes (MWCNTs) using a two-stage process has been investigated. Firstly, the cracking of plastic wastes was carried out at a temperature of 700°C to produce hydrocarbon gases. In the second stage, the produced hydrocarbon gases were decomposed at 650°C on the surface of the Ni-Mo/Al2O3 catalyst to form CNTs. Various analytical tools such as XRD, TPR, TGA, Raman spectroscopy and TEM were used to describe both the fresh catalyst and the obtained CNTs. The results showed that the amount of the hydrocarbon gases was related to the type of plastic waste and hence the CNT yield. Accordingly, LDPE or PP was decomposed to produce the largest gases yield of 72.5 or 70.7 wt%, respectively. As a result, a large CNTs yield of 5.8 and 5 g/gcat can be achieved by pyrolysis of PP and LDPE waste, respectively. However, a small yield of CNTs with little quality and low purity was obtained by using PS or PET waste as the carbon feedstock.  相似文献   
995.
996.
A novel approach based on the equivalent homogenised material concept and the theory of critical distances is formulated to perform static assessment of plain/notched objects of polylactide (PLA) when this polymer is additively manufactured with different infill levels. The key idea is that the internal net structure resulting from the 3D‐printing process can be modelled by keeping treating the material as linear elastic, continuum, homogenous, and isotropic, with the effect of the internal voids being taken into account in terms of change in mechanical/strength properties. This idea is initially used to assess the detrimental effect of the manufacturing voids on the static strength of the plain (ie, unnotched) material. This is done by addressing this problem in a Kitagawa‐Takahashi setting via the Theory of Critical Distances. Subsequently, this approach is extended to the static assessment of notched components of 3D‐printed PLA; ie, it is used to take into account simultaneously the effect of both manufacturing voids and macroscopic geometrical features. The accuracy and reliability of this design methodology were checked against a large number of experimental data generated by testing, under axial loading, plain specimens, as well as notched samples (including open notches) of PLA. These specimens were manufactured by making the infill level vary in the rage 10% to 90%. This validation exercise allowed us to demonstrate that the proposed approach is highly accurate, returning estimates falling within an error interval of ±20%. This remarkable level of accuracy strongly supports the idea that static assessment of 3D‐printed materials with complex geometries and manufactured with different infill levels can be performed by simply post‐processing conventional linear elastic finite element (FE) solid models, ie, without the need for modelling explicitly the detrimental effect of the manufacturing voids.  相似文献   
997.
The introduction of nanoparticles (NPs) and nanostructured materials (NSMs) in papermaking originally emerged from the perspective of improving processing operations and reducing material consumption. However, a very broad range of nanomaterials (NMs) can be incorporated into the paper structure and allows creating paper products with novel properties. This review is of interdisciplinary nature, addressing the emerging area of nanotechnology in papermaking focusing on resources, chemical synthesis and processing, colloidal properties, and deposition methods. An overview of different NMs used in papermaking together with their intrinsic properties and a link to possible applications is presented from a chemical point of view. After a brief introduction on NMs classification and papermaking, their role as additives or pigments in the paper structure is described. The different compositions and morphologies of NMs and NSMs are included, based on wood components, inorganic, organic, carbon-based, and composite NPs. In a first approach, nanopaper substrates are made from fibrillary NPs, including cellulose-based or carbon-based NMs. In a second approach, the NPs can be added to a regular wood pulp as nanofillers or used in coating compositions as nanopigments. The most important processing steps for NMs in papermaking are illustrated including the internal filling of fiber lumen, LbL deposition or fiber wall modification, with important advances in the field on the in situ deposition of NPs on the paper fibers. Usually, the manufacture of products with advanced functionality is associated with complex processes and hazardous materials. A key to success is in understanding how the NMs, cellulose matrix, functional additives, and processes all interact to provide the intended paper functionality while reducing materials waste and keeping the processes simple and energy efficient.  相似文献   
998.
Noting that the dielectric properties of manganese oxide make it a promising microwave-absorbing material, a low-temperature method to deposit crystalline MnO2 over carbon nanotubes (CNTs) is developed. Adjusting the pH of the precursor solution allows control over the phases and morphologies of the synthesized manganese oxides MnO2 and Mn3O4 that have minimum reflection losses of ??11 dB and ??6 dB, respectively. The synthesized CNT–MnO2 and CNT–Mn3O4 nanocomposites are superior microwave absorbers than simpler physical mixtures of CNTs and manganese oxides, with reflection losses as high as ??19 dB at 9.5 GHz and ??34 dB at 4 GHz, and have wider absorption bands than pure manganese oxides. Coating CNTs with manganese oxide not only increases dielectric and magnetic losses, but also improves the impedance match between free space and the absorber. The addition of CNTs to pure MnO2 and Mn3O4 improves impedance matching by enhancing the relaxation polarization and conductivity losses, magnetic loss, including contributions form eddy current and natural resonance. This facile, low-cost, scalable, high-yield method produces an enhanced microwave-absorbing nanocomposite.  相似文献   
999.
As a result of repeated rehabilitation efforts over the past few decades, often asphalt pavements have become deep-strength pavements. Consequently, top-down cracking has become a primary distress type. In particular, the top-down cracking performance of warm mix asphalt (WMA) pavements, i.e. how does it compare with similar hot mix asphalt (HMA) pavements is largely unclear mainly due to the lack of field performance data. This paper presents an effort of monitoring the top-down cracking performance of 28 pavement projects including WMA pavements and their corresponding HMA control pavements with service lives ranging between 4 and 10 years. These pavements cover different climate zones, WMA technologies, service years, pavement structures and traffic volume levels. Two rounds of distress surveys were conducted at a two-year interval, and the material (asphalt binder and mixture) properties of the pavements were determined using field cores. The top-down cracking performance of the HMA and WMA pavements was compared based on the first and second round distress surveys. It was found that the HMA and WMA pavement in general exhibited comparable performance. The significant determinants (material properties) for top-down cracking were determined, which were vertical failure deformation of mixes measured at 20 °C from indirect tension test.  相似文献   
1000.
Nickel alloys including Inconel 718 are considered as challenging materials for machining. Laser beam machining could be a promising choice to deal with such materials for simple to complex machining features. The machining accuracy is mainly dependent on the rate of material removal per laser scan. Because of the involvement of many laser parameters and complexity of the machining mechanism it is not always simple to achieve machining with desired accuracy. Actual machining depth extremely varies from very low to aggressively high values with reference to the designed depth. Thus, a research is needed to be carried out to control the process parameters to get actual material removal rate (MRRact) equals to the theoretical material removal rate (MRRth) with minimum surface roughness (SR) of the machined surfaces. In this study, five important laser parameters have been used to investigate their effects on MRR and SR. Statistical analysis are performed to identify the significant parameters with their strength of effects. Mathematical models have been developed and validated to predict the machining responses. Optimal set of laser parameters have also been proposed and confirmed to achieve the actual MRR close to the designed MRR (MRR% = 100.1%) with minimum surface roughness (Ra = 2.67 µm).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号