首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38006篇
  免费   14806篇
  国内免费   8篇
电工技术   794篇
综合类   22篇
化学工业   17018篇
金属工艺   378篇
机械仪表   706篇
建筑科学   1679篇
矿业工程   27篇
能源动力   818篇
轻工业   7662篇
水利工程   286篇
石油天然气   47篇
无线电   6813篇
一般工业技术   11477篇
冶金工业   554篇
原子能技术   16篇
自动化技术   4523篇
  2023年   20篇
  2021年   222篇
  2020年   1435篇
  2019年   3176篇
  2018年   3135篇
  2017年   3442篇
  2016年   3912篇
  2015年   3969篇
  2014年   3893篇
  2013年   4974篇
  2012年   2675篇
  2011年   2284篇
  2010年   2637篇
  2009年   2517篇
  2008年   2046篇
  2007年   1896篇
  2006年   1638篇
  2005年   1354篇
  2004年   1332篇
  2003年   1314篇
  2002年   1280篇
  2001年   1127篇
  2000年   1070篇
  1999年   457篇
  1998年   61篇
  1997年   48篇
  1996年   18篇
  1995年   18篇
  1994年   26篇
  1993年   17篇
  1992年   17篇
  1991年   19篇
  1990年   22篇
  1989年   14篇
  1987年   16篇
  1943年   18篇
  1942年   14篇
  1936年   18篇
  1934年   16篇
  1930年   15篇
  1928年   15篇
  1925年   19篇
  1924年   26篇
  1923年   19篇
  1918年   28篇
  1917年   30篇
  1916年   26篇
  1915年   34篇
  1911年   14篇
  1910年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
962.
963.
964.
965.
966.
967.
Diamond‐dispersed copper matrix (Cu/D) composite materials with different interfacial configurations are fabricated through powder metallurgy and their thermal performances are evaluated. An innovative solution to chemically bond copper (Cu) to diamond (D) has been investigated and compared to the traditional Cu/D bonding process involving carbide‐forming additives such as boron (B) or chromium (Cr). The proposed solution consists of coating diamond reinforcements with Cu particles through a gas–solid nucleation and growth process. The Cu particle‐coating acts as a chemical bonding agent at the Cu–D interface during hot pressing, leading to cohesive and thermally conductive Cu/D composites with no carbide‐forming additives. Investigation of the microstructure of the Cu/D materials through scanning electron microscopy, transmission electron microscopy, and atomic force microscopy analyses is coupled with thermal performance evaluations through thermal diffusivity, dilatometry, and thermal cycling. Cu/D composites fabricated with 40 vol% of Cu‐coated diamonds exhibit a thermal conductivity of 475 W m?1 K?1 and a thermal expansion coefficient of 12 × 10?6 °C?1. These promising thermal performances are superior to that of B‐carbide‐bonded Cu/D composites and similar to that of Cr‐carbide‐bonded Cu/D composites fabricated in this study. Moreover, the Cu/D composites fabricated with Cu‐coated diamonds exhibit higher thermal cycling resistance than carbide‐bonded materials, which are affected by the brittleness of the carbide interphase upon repeated heating and cooling cycles. The as‐developed materials can be applicable as heat spreaders for thermal management of power electronic packages. The copper‐carbon chemical bonding solution proposed in this article may also be found interesting to other areas of electronic packaging, such as brazing solders, direct bonded copper substrates, and polymer coatings.
  相似文献   
968.
Hybrid composites of layered brittle‐ductile constituents assembled in a brick‐and‐mortar architecture are promising for applications requiring high strength and toughness. Mostly, polymer mortars have been considered as the ductile layer in brick‐and‐mortar composites. However, low stiffness of polymers does not efficiently transfer the shear between hard ceramic bricks. Theoretical models point to metals as a more efficient mortar layer. However, infiltration of metals into ceramic scaffold is non‐trivial, given the low wetting between metals and ceramics. The authors report on an alternative approach to fabricate brick‐and‐mortar ceramic‐metal composites by using electroless plating of nickel (Ni) on alumina micro‐platelets, in which Ni‐coated micro‐platelets are subsequently aligned by a magnetic field, taking advantage of ferromagnetic properties of Ni. The assembled Ni‐coated ceramic scaffold is then sintered using spark plasma sintering (SPS) to locally create Ni mortar layers between ceramic platelets, as well as to sinter the ceramic micro‐platelets. The authors report on materials and mechanical properties of the fabricated composite. The results show that this approach is promising toward development of bioinspired ceramic‐metal composites.
  相似文献   
969.
Electron beam melting (EBM), as one of metal additive manufacturing technologies, is considered to be an innovative industrial production technology. Based on the layer‐wise manufacturing technique, as‐produced parts can be fabricated on a powder bed using the 3D computational design method. Because the melting process takes place in a vacuum environment, EBM technology can produce parts with higher densities compared to selective laser melting (SLM), particularly when titanium alloy is used. The ability to produce higher quality parts using EBM technology is making EBM more competitive. After briefly introducing the EBM process and the processing factors involved, this paper reviews recent progress in the processing, microstructure, and properties of titanium alloys and their composites manufactured by EBM. The paper describes significant positive progress in EBM of all types of titanium in terms of solid bulk and porous structures including Ti–6Al–4V and Ti–24Nb–4Zr–8Sn, with a focus on manufacturing using EBM and the resultant unique microstructure and service properties (mechanical properties, fatigue behaviors, and corrosion resistance properties) of EBM‐produced titanium alloys.
  相似文献   
970.
Aluminum matrix composites (AMCs) reinforced with the nano‐sized particles are very important materials for the applications in industrial fields. These aluminum matrix composites consist of an aluminum matrix and nano‐sized particles, which own very different physical and mechanical properties from those of the matrix. Nano‐sized particles show a more obvious strengthening effect on the matrix than the micro‐sized particles do, because of the high specific surface area which is positive for the pinning effect during the deformation process. Thus, the nano‐sized particle‐reinforced AMCs usually exhibit a good ductility. The main issues of the fabrication methods are the low wettability between the nano‐sized particles and the molten aluminum alloys, which is fatal to the conventional casting methods, and the agglomeration of nano‐sized particles which happened easier than the larger particles. Several alternative processes have been presented in literature for the production of the nano‐sized particle‐reinforced aluminum composites. This paper is aimed at reviewing the feasible manufacturing techniques used for the fabrication of nano‐sized particle‐reinforced aluminum composites. More importantly, the strengthening mechanisms and models which are responsible for the improvement of mechanical properties of the nano‐sized particle‐reinforced aluminum composites have been reviewed.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号