首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18923篇
  免费   2245篇
  国内免费   10篇
电工技术   1375篇
综合类   412篇
化学工业   8928篇
金属工艺   309篇
机械仪表   421篇
建筑科学   768篇
矿业工程   191篇
能源动力   140篇
轻工业   1819篇
水利工程   124篇
石油天然气   68篇
无线电   515篇
一般工业技术   3274篇
冶金工业   269篇
原子能技术   45篇
自动化技术   2520篇
  2023年   641篇
  2022年   341篇
  2021年   708篇
  2020年   712篇
  2019年   612篇
  2018年   606篇
  2017年   427篇
  2016年   668篇
  2015年   844篇
  2014年   873篇
  2013年   1557篇
  2012年   670篇
  2011年   558篇
  2010年   889篇
  2009年   1034篇
  2008年   541篇
  2007年   496篇
  2006年   372篇
  2005年   340篇
  2004年   274篇
  2003年   267篇
  2002年   155篇
  1998年   201篇
  1997年   148篇
  1996年   214篇
  1995年   199篇
  1994年   168篇
  1993年   234篇
  1992年   169篇
  1990年   161篇
  1989年   182篇
  1988年   142篇
  1987年   167篇
  1986年   185篇
  1985年   167篇
  1984年   174篇
  1983年   180篇
  1982年   157篇
  1981年   206篇
  1980年   167篇
  1979年   171篇
  1977年   149篇
  1976年   150篇
  1975年   202篇
  1974年   189篇
  1973年   367篇
  1972年   214篇
  1971年   151篇
  1970年   145篇
  1968年   153篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
We discovered a new class of artificial peptidic transfection vectors based on an artificial anion-binding motif, the guanidiniocarbonylpyrrole (GCP) cation. This new type of vector is surprisingly smaller than traditional systems, and our previous work suggested that the GCP group was important for promoting critical endosomal escape. We now present here a systematic comparison of similar DNA ligands featuring our GCP oxo-anion-binding motif with DNA ligands only consisting of naturally occurring amino acids. Structure–activity studies showed that the artificial binding motif clearly outperformed natural amino acids such as histidine, lysine, and arginine. It improved the ability to shuttle foreign genetic material into cells, yet successfully mediated endosomal escape. Also, plasmids that were complexed by our artificial ligands were stabilized against cytosolic degradation to some extent. This resulted in the successful expression of plasmid information (comparable to gold standards such as polyethyleneimine). Hence, our study clearly demonstrates the importance of the tailor-made GCP anion-binding site for efficient gene transfection.  相似文献   
982.
Squalene–hopene cyclases (SHCs) catalyze the polycyclization of squalene into a mixture of hopene and hopanol. Recently, amino-acid residues lining the catalytic cavity of the SHC from Alicyclobacillus acidocaldarius were replaced by small and large hydrophobic amino acids. The alteration of leucine 607 to phenylalanine resulted in increased enzymatic activity towards the formation of an intermolecular farnesyl–farnesyl ether product from farnesol. Furthermore, the addition of small-chain alcohols acting as nucleophiles led to the formation of non-natural ether-linked terpenoids and, thus, to significant alteration of the product pattern relative to that obtained with the wild type. It is proposed that the mutation of leucine at position 607 may facilitate premature quenching of the intermediate by small alcohol nucleophiles. This mutagenesis-based study opens the field for further intermolecular bond-forming reactions and the generation of non-natural products.  相似文献   
983.
The synthesis and structural characterization of Co-(dN)25-Cbl (Cbl: cobalamin; dN: deoxynucleotide) and Co-(dN)39-Cbl, which are organometallic DNA–B12 conjugates with single DNA strands consisting of 25 and 39 deoxynucleotides, respectively, and binding studies of these two DNA–Cbl conjugates to three homologous human Cbl transporting proteins, transcobalamin (TC), intrinsic factor (IF), and haptocorrin (HC), are reported. This investigation tests the suitability of such DNA–Cbls for the task of eventual in vivo oligonucleotide delivery. The binding of DNA–Cbl to TC, IF, and HC was investigated in competition with either a fluorescent Cbl derivative and Co-(dN)25-Cbl, or radiolabeled vitamin B12 (57Co-CNCbl) and Co-(dN)25-Cbl or Co-(dN)39-Cbl. Binding of the new DNA–Cbl conjugates was fast and tight with TC, but poorer with HC and IF, which extends a similar original finding with the simpler DNA–Cbl, Co-(dN)18-Cbl. The contrasting affinities of TC versus IF and HC for the DNA–Cbl conjugates are rationalized herein by a stepwise mechanism of Cbl binding. Critical contributions to overall affinity result from gradual conformational adaptations of the Cbl-binding proteins to the DNA–Cbl, which is first bound to the respective β domains. This transition is fast with TC, but slow with IF and HC, with which weaker binding results. The invariably tight interaction of the DNA–Cbl conjugates with TC makes the Cbl moiety a potential natural vector for the specific delivery of oligonucleotide loads from the blood into cells.  相似文献   
984.
Inteins carry out protein-splicing reactions, which are used in protein chemistry, protein engineering and biotechnological applications. Rearrangement of the order of the domains in split-inteins results in head-to-tail cyclisation of the target sequence, which can be used for genetic encoding and expression of libraries of cyclic peptides (CPs). The efficiency of the splicing reaction depends on the target sequence. Here we used mass spectrometry to assess in vivo cyclic peptide formation from different hexameric target sequences by the DnaE split-inteins from Synechocystis sp. and Nostoc punctiforme, revealing a strong impact of the target sequence and of the intein on the intracellular peptide concentration. Furthermore, we determined the crystal structures of their pre-splicing complexes, which allowed us to identify F-block Asp17 as crucial for the DnaE-mediated splicing reaction.  相似文献   
985.
986.
987.
Cryopreservation of kangaroo sperm has not been successful so far, and yet there is no promising cryopreservation protocol for these cells available. However, conservation of gametes is extremely important, particularly in the context of preserving endangered species. As spermatozoa are comprised of different membrane systems, the composition of these membranes might account for difficulties in cryopreservation. Lipids, as the main components, affect the physical properties of biological membranes and play a major role in sperm maturation. Therefore, knowledge of the lipid composition is crucial for any further step toward the preservation of the species. We used MALDI‐TOF, ESI‐IT, tandem mass spectrometry, and thin layer chromatography to investigate the lipid composition of epididymal spermatozoa of four different kangaroo species. Spectra of these species were very similar with respect to the identified lipid species. Tremendous changes in the lipid composition during the transit of sperm from caput to cauda epididymis could be seen, specifically an increase in poly‐unsaturated fatty acids, ether lipids, and plasmalogens, as well as a reduction in mono‐ and di‐unsaturated fatty acids. Additionally, phosphatidylcholines containing docosatrienoic acid (22:3), a heretofore unknown fatty acid for sperm membranes, showed the highest abundance in kangaroo sperm.  相似文献   
988.
Chronic inflammatory diseases are often progressive, resulting not only in physical damage to patients but also social and economic burdens, making early diagnosis of them critical. Nuclear medicine techniques can enhance the detection of inflammation by providing functional as well as anatomical information when combined with other modalities such as magnetic resonance imaging, computed tomography or ultrasonography. Although small molecules and peptides were mainly used for the treatment and imaging of chronic inflammatory diseases in the past, antibodies and their fragments have also been emerging for chronic inflammatory diseases as they show high specificity to their targets and can have various biological half-lives depending on how they are engineered. In addition, imaging with antibodies or their fragments can visualize the in vivo biodistribution of the probes or help monitor therapeutic responses, thereby providing physicians with a greater understanding of drug behavior in vivo and another means of monitoring their patients. In this review, we introduce various targets and radiolabeled antibody-based probes for the molecular imaging of chronic inflammatory diseases in preclinical and clinical studies. Targets can be classified into three different categories: 1) cell-adhesion molecules, 2) surface markers on immune cells, and 3) cytokines or enzymes. The limitations and future directions of using radiolabeled antibodies for imaging inflammatory diseases are also discussed.  相似文献   
989.
Histone ubiquitylation and deubiquitylation processes and the mechanisms of their regulation are closely relevant to the field of epigenetics. Recently, the deubiquitylating enzyme USP51 was reported to selectively cleave ubiquitylation on histone H2A at K13 or K15 (i.e., H2AK13Ub and H2AK15Ub), but not at K119 (i.e., H2AK119Ub), in nucleosomes in vivo. To elucidate the mechanism for the selectivity of USP51, we constructed structurally well-defined in vitro protein systems with a ubiquitin modification at precise sites. A total chemical protein synthesis procedure was developed, wherein hydrazide-based native chemical ligation was used to efficiently generate five ubiquitylated histones (H2AK13Ub, H2AK15Ub, H2AK119Ub, H2BK34Ub, and H2BK120Ub). These synthetic ubiquitylated histones were assembled into nucleosomes and subjected to in vitro USP51 deubiquitylation assays. Surprisingly, USP51 did not show preference between H2AK13/15Ub and H2AK119Ub, in contrast to previous in vivo observations. Accordingly, an understanding of the selectivity of USP51 may require consideration of other factors, such as alternative pre-existing histone modifications, competitive reader proteins, or different nucleosome quality among the in vivo extraction nucleosome and the in vitro reconstitution one. Further experiments established that USP51 in vitro could deubiquitylate a nucleosome carrying H2BK120Ub, but not H2BK34Ub. Molecular dynamics simulations suggested that USP51-catalyzed hydrolysis of ubiquitylated nucleosomes was affected by steric hindrance of the isopeptide bond.  相似文献   
990.
Peptide self-assembly, inspired by the naturally occurring fabrication principle, remains the most attractive in constructing fluorescent nanoagents towards bioimaging. However, the noncovalent interactions that drive peptide self-assembly are usually susceptible to the complex physiological environment; thus leading to disassembly and dysfunction of fluorescent nanoagents. Herein, a covalently crosslinked assembly strategy for fabrication of stable peptide-based nanoparticles with adjustable emission is introduced. In the process of cationic diphenylalanine peptide (H-Phe-Phe-NH2 ⋅ HCl) self-assembly, glutaraldehyde is used as a crosslinker and the resulting product of the Schiff base reaction can be fluorescent. More importantly, the emission wavelength can be readily tuned by controlling the covalent reaction time. It has been demonstrated that the nanoparticles are stable, even after intracellular uptake, and can be used for sustainable multicolor fluorescent imaging. The strategy with integrating peptide self-assembly and covalent crosslinking could be promising for the design and engineering of functional fluorescent nanoparticles with robust physiological stability and adjustable emission towards improved bioimaging applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号