首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   13篇
化学工业   4篇
金属工艺   1篇
机械仪表   1篇
建筑科学   2篇
能源动力   3篇
轻工业   4篇
无线电   33篇
一般工业技术   35篇
冶金工业   13篇
自动化技术   12篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   4篇
  2006年   7篇
  2005年   7篇
  2004年   3篇
  2003年   4篇
  2001年   1篇
  1999年   4篇
  1998年   8篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1975年   1篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有108条查询结果,搜索用时 812 毫秒
21.
Thin films were deposited by plasma enhanced chemical vapor deposition from titanium (IV) ethoxide (TEOT)–oxygen–helium mixtures. Actinometric optical emission spectroscopy was used to obtain the relative plasma concentrations of the species H, CH, O and CO as a function of the percentage of oxygen in the feed, Rox. The concentrations of these species rise with increasing Rox and tend to fall for Rox greater than about 45%. As revealed by a strong decline in the emission intensity of the actinometer Ar as Rox was increased, the electron mean energy or density (or both) decreased as greater proportions of oxygen were fed to the chamber. This must tend to reduce gas-phase fragmentation of the monomer by plasma electrons. As the TEOT flow rate was fixed, however, and since the species H and CH do not contain oxygen, the rise in their plasma concentrations with increasing Rox is explained only by intermediate reactions involving oxygen or oxygen-containing species. Transmission infrared (IRS) and X-ray photoelectron (XPS) spectroscopies were employed to investigate film structure and composition. The presence of CH2, CH3, CC, C–O and CO groups was revealed by IRS. In addition, the presence of C–O and CO groups was confirmed by XPS, which also revealed titanium in the + 4 valence state. The Ti content of the films, however, was found to be much less than that of the monomer material itself.  相似文献   
22.
The combined effects of illumination and thermal annealing on the morphological stability and photodimerization in polymer/fullerene thin films are examined. While illumination is known to cause fullerene dimerization and thermal stress their dedimerization, the operation of solar cells involves exposure to both. The competitive outcome of these factors with blends of phenyl‐C61‐butyric acid methyl ester (PCBM) and polystyrene (PS), supported on PEDOT:PSS is quantified. UV–vis spectroscopy is employed to quantify dimerization, time‐resolved neutron reflectivity to resolve the vertical composition stratification, and atomic force microscopy for demixing and coarsening in thin films. At the conventional thermal stress test temperature of 85 °C (and even up to the PS glass transition), photodimerization dominates, resulting in relative morphological stability. Prior illumination is found to result in improved stability upon high temperature annealing, compatible with the need for dedimerization to occur prior to structural relaxation. Modeling of the PCBM surface segregation data suggests that only PCBM monomers are able to diffuse and that illumination provides an effective means to control dimer population, and thus immobile fullerene fraction, in the timescales probed. The results provide a framework for understanding of the stability of organic solar cells under operating conditions.  相似文献   
23.
The origin of performance enhancements in p‐i‐n perovskite solar cells (PSCs) when incorporating low concentrations of the bulky cation 1‐naphthylmethylamine (NMA) are discussed. A 0.25 vol % addition of NMA increases the open circuit voltage (Voc) of methylammonium lead iodide (MAPbI3) PSCs from 1.06 to 1.16 V and their power conversion efficiency (PCE) from 18.7% to 20.1%. X‐ray photoelectron spectroscopy and low energy ion scattering data show NMA is located at grain surfaces, not the bulk. Scanning electron microscopy shows combining NMA addition with solvent assisted annealing creates large grains that span the active layer. Steady state and transient photoluminescence data show NMA suppresses non‐radiative recombination resulting from charge trapping, consistent with passivation of grain surfaces. Increasing the NMA concentration reduces device short‐circuit current density and PCE, also suppressing photoluminescence quenching at charge transport layers. Both Voc and PCE enhancements are observed when bulky cations (phenyl(ethyl/methyl)ammonium) are incorporated, but not smaller cations (Cs/MA)—indicating size is a key parameter. Finally, it demonstrates that NMA also enhances mixed iodide/bromide wide bandgap PSCs (Voc of 1.22 V with a 1.68 eV bandgap). The results demonstrate a facile approach to maximizing Voc and provide insights into morphological control and charge carrier dynamics induced by bulky cations in PSCs.  相似文献   
24.
Colloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light–matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom‐up assembling semiconductor devices, the development of QD solar cell (QDSC) is still confronting considerable challenges compared to other QD technologies due to their low performance under natural sunlight, as a consequence of untapped potential from their quantized density‐of‐state and inorganic natures. This report is designed to address this long‐standing challenge by accessing the feasibility of using QDSC for indoor and concentration PV (CPV) applications. This work finds that above bandgap photon energy irradiation of QD solids can generate high densities of excitons via multi‐photon absorption (MPA), and these excitons are not limited to diffuse by Auger recombination up to 1.5 × 1019 cm?3 densities. Based on these findings, a 19.5% (2000 lux indoor light) and an 11.6% efficiency (1.5 Suns) have been facilely realized from ordinary QDSCs (9.55% under 1 Sun). To further illustrate the potential of the MPA in QDSCs, 21.29% efficiency polymer lens CPVs (4.08 Suns) and viable sensor networks powered by indoor QDSCs matrix have been demonstrated.  相似文献   
25.
A new method to synthesize an electron‐rich building block cyclopentadithienothiophene (9H‐thieno‐[3,2‐b]thieno[2″,3″:4′,5′]thieno[2′,3′:3,4]cyclopenta[1,2‐d]thiophene, CDTT) via a facile aromatic extension strategy is reported. By combining CDTT with 1,1‐dicyanomethylene‐3‐indanone endgroups, a promising nonfullerene small molecule acceptor (CDTTIC) is prepared. As‐cast, single‐junction nonfullerene organic solar cells based on PFBDB‐T: CDTTIC blends exhibit very high short‐circuit currents up to 26.2 mA cm?2 in combination with power conversion efficiencies over 11% without any additional processing treatments. The high photocurrent results from the near‐infrared absorption of the CDTTIC acceptor and the well‐intermixed blend morphology of polymer donor PFBDB‐T and CDTTIC. This work demonstrates a useful fused ring extension strategy and promising solar cell results, indicating the great potential of the CDTT derivatives as electron‐rich building blocks for constructing high‐performance small molecule acceptors in organic solar cells.  相似文献   
26.
27.
Photoinduced charge separation in bulk heterojunction solar cells is studied using a series of thiazolo‐thiazole donor polymers that differ in their side groups (and bridging atoms) blended with two acceptor fullerenes, phenyl‐C71‐butyric acid methyl ester (PC71BM) and a fullerene indene‐C60 bisadduct (ICBA). Transient absorption spectroscopy is used to determine the yields and lifetimes of photogenerated charge carriers, complimented by cyclic voltammetry studies of materials energetics, wide angle X‐ray diffraction and transmission electron microscopy studies of neat and blend film crystallinity and photoluminescence quenching studies of polymer/fullerene phase segregation, and the correlation of these measurements with device photocurrents. Good correlation between the initial polaron yield and the energetic driving force driving charge separation, ΔECS is observed. All blend films exhibit a power law transient absorption decay phase assigned to non‐geminate recombination of dissociated charges; the amplitude of this power law decay phase shows excellent correlation with photocurrent density in the devices. Furthermore, for films of one (relatively amorphous) donor polymer blended with ICBA, we observe an additional 100 ns geminate recombination phase. The implications of the observations reported are discussed in terms of the role of materials' crystallinity in influencing charge dissociation in such devices, and thus materials design requirements for efficient solar cell function.  相似文献   
28.
Abstract

Measurements are presented of the collisional relaxation of two-pulse echoes on the 455 nm and 459 nm D-lines of atomic caesium perturbed by low pressures of He, Ar and Xe using the echo-polarisation rotation technique, with interpulse times up to approximately 200 ns. The line broadening constants are measured to about 3% and show significant discrepancies with line profile measurements. For τ ? 100ns there is evidence for the diffractive velocity-changing aspects of the collisions. The mean collisional velocity changes and the cross-sections for diffractive velocity-changing collisions are estimated from the data. The results are found to be insensitive to variations of axial magnetic fields and optical densities.  相似文献   
29.
30.
In this paper we report an empirical study of the photographic portrayal of family members at home. Adopting a social psychological approach and focusing on intergenerational power dynamics, our research explores the use of domestic photo displays in family representation. Parents and their teenagers from eight families in the south of England were interviewed at home about their interpretations of both stored and displayed photos within the home. Discussions centred on particular photographs found by the participants to portray self and family in different ways. The findings show that public displays of digital photos are still curated by mothers of the households, but with more difficulty and less control than with analogue photos. In addition, teenagers both contribute and comply with this curation within the home, whilst at the same time developing additional ways of presenting their families and themselves online that are ‘unsupervised’ by the curator. We highlight the conflict of interest that is at play within teen and parent practices and consider the challenges that this presents for supporting the representation of family through the design of photo display technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号