首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
自动化技术   13篇
  2023年   1篇
  2017年   1篇
  2013年   1篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
11.
In this paper we present a novel real-time cartoon-style rendering approach, which targets very large meshes. Cartoon drawing usually uses a limited number of colors for shading and emphasizes special effects, such as sharp curvature and silhouettes. It also paints the remaining large regions with uniform solid colors. Our approach quantizes light intensity to generate different shadow colors and utilizes multiresolution mesh hierarchy to maintain appropriate levels of detail across various regions of the mesh. To comply with visual requirements, our algorithm exploits graphics hardware programmability to draw smooth silhouette and color boundaries within the vertex and fragment processors. We have adopted a simplification scheme that executes simplification operators without incurring extra simplification operations as a precondition. The real-time refinement of the mesh, which is performed by the graphics processing unit (GPU), dramatically improves image quality and reduces CPU load.  相似文献   
12.
In this paper, we present a vision-based approach for transmitting virtual models for Augmented Reality, which we name In-Place Augmented Reality (IPAR). A two-dimensional representation of the virtual models is embedded in a printed image. We apply computer vision techniques to interpret the printed image and extract the virtual models, which are then overlaid on the printed image. The main advantages of our approach are: (1) the image of the embedded virtual models and their behaviors are understandable to a human without using an AR system and (2) no database or network communication is required to retrieve the models. To demonstrate the technology and test its usability, we implemented several applications and performed a user evaluation. We discuss how the proposed technique can be used for the development of applications in different domains such as education, advertisement, and gaming.  相似文献   
13.
We present an algorithm for performing adaptive real-time level-of-detail-based rendering for triangulated polygonal models. The simplifications are dependent on viewing direction, lighting, and visibility and are performed by taking advantage of image-space, object-space, and frame-to-frame coherences. In contrast to the traditional approaches of precomputing a fixed number of level-of-detail representations for a given object, our approach involves statically generating a continuous level-of-detail representation for the object. This representation is then used at run time to guide the selection of appropriate triangles for display. The list of displayed triangles is updated incrementally from one frame to the next. Our approach is more effective than the current level-of-detail-based rendering approaches for most scientific visualization applications, where there are a limited number of highly complex objects that stay relatively close to the viewer. Our approach is applicable for scalar (such as distance from the viewer) as well as vector (such as normal direction) attributes  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号