首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   20篇
  国内免费   2篇
电工技术   4篇
综合类   3篇
化学工业   101篇
金属工艺   7篇
机械仪表   9篇
建筑科学   7篇
能源动力   24篇
轻工业   30篇
水利工程   5篇
石油天然气   3篇
无线电   21篇
一般工业技术   46篇
冶金工业   5篇
原子能技术   22篇
自动化技术   31篇
  2024年   1篇
  2023年   4篇
  2022年   10篇
  2021年   13篇
  2020年   15篇
  2019年   19篇
  2018年   26篇
  2017年   26篇
  2016年   21篇
  2015年   17篇
  2014年   22篇
  2013年   29篇
  2012年   16篇
  2011年   25篇
  2010年   16篇
  2009年   19篇
  2008年   5篇
  2007年   6篇
  2006年   8篇
  2005年   7篇
  2004年   3篇
  2001年   1篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1979年   1篇
  1971年   1篇
排序方式: 共有318条查询结果,搜索用时 268 毫秒
51.
Regarding the increasing number of cancer patients, the global burden of this disease is continuing to grow. Despite a considerable improvement in the diagnosis and treatment of various types of cancer, new diagnosis and treatment strategies are required. Nanotechnology, as an interesting and advanced field in medicine, is aimed to further advance both cancer diagnosis and treatment. Gold nanocages (AuNCs), with hollow interiors and porous walls, have received a great deal of interest in various biomedical applications such as diagnosis, imaging, drug delivery, and hyperthermia therapy due to their special physicochemical characteristics including the porous structure and surface functionalization as well as optical and photothermal properties. This review is focused on recent developments in therapeutic and diagnostic and applications of AuNCs with an emphasis on their theranostic applications in cancer diseases.  相似文献   
52.
In the present study, aluminum nitride-carbon (AlN-C) nanocomposites are synthesized through a green, facile and inexpensive mechanochemical route. Well-dispersed nanofluids are prepared by milling of nanocomposite in ethylene glycol (EG) without using any surfactants/ dispersants. The resulting nanofluids have an excellent stability with no obvious sedimentation for at least three months. The results confirm the in-situ polymerization of EG on AlN surface and the formation of hyperbranched glycerol upon milling which in turn stabilizes the particles through a steric effect. The working nanofluids with very low loadings of up to 0.22 vol% of powder exhibit an enhanced heat transfer coefficient (h) of about 24% compared to that of the base fluid in a laminar flow regime (Re = 160). Brownian motion and boundary layer thinning are known as the main mechanisms, causing for this enhancement.  相似文献   
53.
Hydrogels, nanogels, and nanocomposites show increasing potential for application in drug delivery systems due to their good chemical and physical properties. Therefore, we were encouraged to combine them to produce a new compound with unique properties for drug release systems. To this aim, we first prepared poly [(N-isopropylacrylamide)-co-(2-dimethylamino ethyl methacrylate) nanogel by copolymerization processes and then added it into the solution of poly (2-dimethylamino ethyl methacrylate)] grafted onto salep. Through dropwise addition of mixed aqueous solution of iron salts into the prepared polymeric solution, a novel hydrogel nanocomposite with excellent pH, thermo, and magnetic responsive was fabricated. The obtained hydrogel nanocomposite were characterized by Fourier transform infrared spectroscopy, thermo gravimetric analysis, X-ray diffraction, scanning electron microscopy, vibrating sample magnetometer, and atomic force micrographs. The dependence of swelling properties of hydrogel nanocomposite on the temperature, pH, and magnetic field were investigated. The release behavior of doxorubicin hydrochloride (DOX) drug from DOX loaded into synthesized hydrogel nanocomposite was investigated at different pHs, temperatures, and magnetic field. In addition, the drug release behavior from obtained hydrogel nanocomposite was monitored via different kinetic models. Lastly, the toxicity of the DOX and DOX-loaded hydrogel nanocomposite were studied on MCF-7 cells at different times. These results suggested that the obtained hydrogel nanocomposite might have high potential applications in drug delivery systems.  相似文献   
54.
Crystallization kinetics of polymer/clay systems was the subject of numerous investigations, but still there are some ambiguities in understanding thermal behavior of such systems under isothermal and nonisothermal circumstances. In this work, isothermal rheokinetic and nonisothermal calorimetric analyses are combined to demonstrate crystallization kinetics of polyamide6/nanoclay (PA6/NC) nanocomposites. As the main outcome of this work, we detected different regimes of crystallization and compared them by both isothermal dynamic rheometry and nonisothermal differential scanning calorimetry (DSC), which has not been simultaneously addressed yet. A novel analysis, somehow different from the common ones, is used to convert the storage modulus data to crystallinity values leading to more reasonable Avrami parameters in isothermal crystallization. It was found based on isothermal rheokinetic studies that increase of NC content and shear rate are responsible for erratic behavior of Avrami exponent and crystallization rates. Optimistically, however, isothermal crystallization by rheometer was confirmed by DSC. Nonisothermal calorimetric evaluations suggested an accelerated crystallization of PA6 upon increasing NC content and cooling rate. The crystallization behavior was quantified applying Ozawa (r2 between 0.070 and 0.975), and combinatorial Avrami–Ozawa (r2 between 0.984 and 0.998) models, where the latter appeared more appropriate for demonstration of nonisothermal crystallization of PA6/NC nanocomposites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46364.  相似文献   
55.
Fe3O4 nanoparticles were prepared through solvo-thermal method for further heat transfer applications. TEM, XRD, TGA, and VSM were applied to characterize the obtained nanoparticles. XRD pattern confirmed that nanoparticles were composed of 6-nm crystallites; however, TEM images showed the formation of ca. 75-nm highly dispersed magnetite clusters, made up of about 6-nm nanoparticles. Since, VSM analysis confirmed the superparamagnetic characteristics of Fe3O4 nanoclusters, heat transfer properties of the resulting nanofluids were studied to investigate the influence of the magnetic field on the behavior of the magnetite-based nanofluids. The findings indicated that the convective heat transfer coefficient increased up to 48% and 15%, respectively, for nanofluids containing 0.005 wt% magnetite particles dispersed in water and EG, when the frequency of the alternating magnetic field was changed from 50 Hz to 1 MHz. According to the results, compared to the water-based nanofluids, at higher field amplitudes, the h enhancements of EG-based ones were more pronounced, for instance, at H0 = 36,000 A/m, the h measurements are augmented by about 74% and 109%, respectively, compared to the water and EG as the base fluids. These findings could be explained by the use of specific lost powers of the nanofluids in the exposure of an external alternating magnetic field.  相似文献   
56.
In this paper, the energy efficiency (EE) of a decode and forward (DF) relay system is studied, where two sources communicate through a half-duplex relay node in one-way and two-way relaying strategies. Both the circuitry power and the transmission power of all nodes are taken into consideration. In addition, three different coding schemes for two-way DF relaying strategy with two phases and two-way DF relaying with three phases are considered. The aim is to maximize the EE of the system for a constant spectral efficiency (SE). For this purpose, the transmission time and the transmission power of each node are optimized. Simulations are used to compare the EE–SE curve of different DF strategies with one-way and two-way amplify and forward (AF) strategies and direct transmission (DT), to find the best energy efficient strategy in different SE conditions. Analytical and simulation results demonstrate that in low SE conditions, DF relaying strategies are more energy efficient compared to that of AF strategies and DT. However, in high SE conditions, the EE of two-way AF relaying and DT strategy outperform some of the DF relaying strategies. In simulations, the impact of different circuitry power and different channel conditions on the EE–SE curves are also investigated.  相似文献   
57.
Particle-like Co3O4–CeO2 nanocomposite was synthesized via a facile thermal decomposition process in the presence of fructose as a green capping agent and ammonium cerium(IV) nitrate as Ce source. The effect of various parameters such as different cobalt sources, calcination temperature and time were investigated on the size and morphology of products. The transmission electron microscopy observations indicated that the synthesized products have a particle-like shape with an average diameter of 18–35 nm. For the first time, the electrochemical hydrogen storage performance of Co3O4–CeO2 porous nanocomposite was investigated via chronopotentiometry method in aqueous KOH solution in this paper. The electrochemical measurements showed that this product has a good hydrogen storage capacity at room temperature. Its maximum discharge capacity was 5200 mAh/g after 20 cycles. Therefore, Co3O4–CeO2 porous nanocomposite showed that it is a good candidate for electrochemical hydrogen storage.  相似文献   
58.
In this research, the possibility of mechanochemical decomposition of ammonium paratungstate (APT) has been studied, and compared with thermal decomposition method. For this purpose, APT powders were milled using a planetary ball mill up to 36 h and under air atmosphere. For thermal decomposition, APT powders were heated for 30 minutes at 300 and 450 °C in air atmosphere. X-ray diffraction (XRD), differential scanning calorimeter (DSC), and thermo gravimetric analyzer (TGA) were used to study the decomposition progress, and products. The XRD results showed that APT completely decomposed to WO3 by thermal decomposition, while the final product of mechanochemical decomposition was WO3 (H2O)0.5. According to DSC and TGA results, during thermal decomposition, ammonia and water released in four steps, and leaved WO3. By mechanochemical decomposition crystal water and ammonia liberated from APT structure, but structural water of APT remained. In both methods, an X-ray amorphous phase was the intermediate product of APT decomposition.  相似文献   
59.
A 10 kJ (15 kV, 88 μF) IS (Iranian Sun) Mather type plasma focus device has been studied to determine the activity of a compound exogenous carbon solid target through 12C(d,n)13N nuclear reaction. The produced 13N is a short-lived radioisotope with a half-life of 9.97 min and threshold energy of 0.28 MeV. The results indicate that energetic deuterons impinging on the solid target can produce yield of $ \langle y\rangle $  = 6.7 × 10?5 with an activity of A = 6.8 × 104 Bq for one plasma focus shut and A ν  = 4 × 105 Bq for 6 shut per mint when the projectile maximum deuterons energy is E max = 3 MeV.  相似文献   
60.
A low cost supercritical CO2 foaming rig with a novel design has been used to prepare fully interconnected and highly porous biodegradable scaffolds with controllable pore size and structure that can promote cancellous bone regeneration. Porous polymer scaffolds have been produced by plasticising the polymer with high pressure CO2 and by the formation of a porous structure following the escape of CO2 from the polymer. Although, control over pore size and structure has been previously reported as difficult with this process, the current study shows that control is possible. The effects of processing parameters such as CO2 saturation pressure, time and temperature and depressurisation rate on the morphological properties, namely porosity, pore interconnectivity, pore size and wall thickness- of the scaffolds have been investigated. Poly(d,l)lactic acid was used as the biodegradable polymer. The surfaces and internal morphologies of the poly(d,l)lactic acid scaffolds were examined using optical microscope and micro computed tomography. Preosteoblast human bone cells were seeded on the porous scaffolds in vitro to assess cell attachment and viability. The scaffolds showed a good support for cell attachment, and maintained cell viability throughout 7 days in culture. This study demonstrated that the morphology of the porous structure can be controlled by varying the foaming conditions, allowing the porous scaffolds to be used in various tissue engineering applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号