首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   651篇
  免费   27篇
电工技术   5篇
化学工业   254篇
金属工艺   9篇
机械仪表   19篇
建筑科学   13篇
矿业工程   1篇
能源动力   19篇
轻工业   110篇
水利工程   1篇
石油天然气   1篇
无线电   33篇
一般工业技术   88篇
冶金工业   35篇
原子能技术   10篇
自动化技术   80篇
  2023年   5篇
  2022年   39篇
  2021年   59篇
  2020年   18篇
  2019年   19篇
  2018年   17篇
  2017年   17篇
  2016年   21篇
  2015年   16篇
  2014年   20篇
  2013年   54篇
  2012年   36篇
  2011年   41篇
  2010年   39篇
  2009年   38篇
  2008年   49篇
  2007年   28篇
  2006年   20篇
  2005年   23篇
  2004年   15篇
  2003年   4篇
  2002年   8篇
  2001年   9篇
  2000年   10篇
  1999年   7篇
  1998年   9篇
  1997年   8篇
  1996年   3篇
  1995年   5篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1990年   5篇
  1989年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1981年   6篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1971年   1篇
  1969年   1篇
排序方式: 共有678条查询结果,搜索用时 349 毫秒
671.
Mesenchymal Stem Cells (MSCs) are adult multipotent cells able to increase sensory neuron survival: direct co-culture of MSCs with neurons is pivotal to observe a neuronal survival increase. Despite the identification of some mechanisms of action, little is known about how MSCs physically interact with neurons. The aim of this paper was to investigate and characterize the main mechanisms of interaction between MSCs and neurons. Morphological analysis showed the presence of gap junctions and tunneling nanotubes between MSCs and neurons only in direct co-cultures. Using a diffusible dye, we observed a flow from MSCs to neurons and further analysis demonstrated that MSCs donated mitochondria to neurons. Treatment of co-cultures with the gap junction blocker Carbenoxolone decreased neuronal survival, thus demonstrating the importance of gap junctions and, more in general, of cell communication for the MSC positive effect. We also investigated the role of extracellular vesicles; administration of direct co-cultures-derived vesicles was able to increase neuronal survival. In conclusion, our study demonstrates the presence and the importance of multiple routes of communication between MSCs and neurons. Such knowledge will allow a better understanding of the potential of MSCs and how to maximize their positive effect, with the final aim to provide the best protective treatment.  相似文献   
672.
Computational models offer a unique setting to test strategies to mitigate the spread of infectious diseases, providing useful insights to applied public health. To be actionable, models need to be informed by data, which can be available at different levels of detail. While high-resolution data describing contacts between individuals are increasingly available, data gathering remains challenging, especially during a health emergency. Many models thus use synthetic data or coarse information to evaluate intervention protocols. Here, we evaluate how the representation of contact data might affect the impact of various strategies in models, in the realm of COVID-19 transmission in educational and work contexts. Starting from high-resolution contact data, we use detailed to coarse data representations to inform a model of SARS-CoV-2 transmission and simulate different mitigation strategies. We find that coarse data representations estimate a lower risk of superspreading events. However, the rankings of protocols according to their efficiency or cost remain coherent across representations, ensuring the consistency of model findings to inform public health advice. Caution should be taken, however, on the quantitative estimations of those benefits and costs triggering the adoption of protocols, as these may depend on data representation.  相似文献   
673.
The formal asymmetric and stereodivergent enzymatic reduction of α-angelica lactone to both enantiomers of γ-valerolactone was achieved in a one-pot cascade by uniting the promiscuous stereoselective isomerization activity of Old Yellow Enzymes with their native reductase activity. In addition to running the cascade with one enzyme for each catalytic step, a bifunctional isomerase-reductase biocatalyst was designed by fusing two Old Yellow Enzymes, thereby generating an unprecedented case of an artificial enzyme catalyzing the reduction of nonactivated C=C bonds to access (R)-valerolactone in overall 41 % conversion and up to 91 % ee. The enzyme BfOYE4 could be used as single biocatalyst for both steps and delivered (S)-valerolactone in up to 84 % ee and 41 % overall conversion. The reducing equivalents were provided by a nicotinamide recycling system based on formate and formate dehydrogenase, added in a second step. This enzymatic system provides an asymmetric route to valuable chiral building blocks from an abundant bio-based chemical.  相似文献   
674.
Some 2,4-disubstituted quinazolines were synthesized and studied as multidrug resistance (MDR) reversers. The new derivatives carried the quinazoline-4-amine scaffold found in modulators of the ABC transporters involved in MDR, as the TKIs gefitinib and erlotinib. Their behaviour on the three ABC transporters, P-gp, MRP1 and BCRP, was investigated. Almost all compounds inhibited the P-gp activity in MDCK-MDR1 cells overexpressing P-gp, showing EC50 values in the nanomolar range ( 1 d , 1 e , 2 a , 2 c , 2 e ). Some compounds were active also towards MRP1 and/or BCRP. Docking results obtained by in silico studies on the P-gp crystal structure highlighted common features for the most potent compounds. The P-gp selective compound 1 e was able to increase the doxorubicin uptake in HT29/DX cells and to restore its antineoplastic activity in resistant cancer cells in the same extent of sensitive cells. Compound 2 a displayed a dual inhibitory effect showing good activities towards both P-gp and BCRP.  相似文献   
675.
The increasing need to improve the sustainability of industrial processes requires more flexible and intensified solutions. For this purpose, nowadays lots of efforts are made to switch from batch to continuous processes, the latter being able to ensure the same processing history to all fluid elements, with a consequent better control of the operating conditions and product quality. The present work aims at developing a continuous flow reactor for the production of several fine chemicals, including medical-surgical aids, but also other substances for specific industrial sectors. The plant is basically an inline reactor equipped with various static mixers and side inlets, and it is conceived to ensure on-site production. This is an important feature also in light of the recent COVID-19 pandemic, which asked for flexible and distributed production of chemicals. Numerical simulations based on computational fluid dynamics are employed to study the performance, in terms of pressure drops and degree of mixing, of different static mixers, that is, the Lightnin Inliner Series 50 and Ross low pressure drop (LPD), combining various elements of mixing and injections in different operating conditions in both laminar and turbulent regimes. The results highlighted how numerical simulations may represent a valid tool for supporting the detailed design of such flow reactors by allowing the evaluation of the optimal design solutions.  相似文献   
676.
Molecularly imprinted polymers (MIPs) have recently emerged as robust and versatile artificial receptors. MIP synthesis is carried out in liquid phase and optimized on planar surfaces. Application of MIPs to nanostructured materials is challenging due to diffusion-limited transport of monomers within the nanomaterial recesses, especially when the aspect ratio is >10. Here, the room temperature vapor-phase synthesis of MIPs in nanostructured materials is reported. The vapor phase synthesis leverages a >1000-fold increase in the diffusion coefficient of monomers in vapor phase, compared to liquid phase, to relax diffusion-limited transport and enable the controlled synthesis of MIPs also in nanostructures with high aspect ratio. As proof-of-concept application, pyrrole is used as the functional monomer thanks to its large exploitation in MIP preparation; nanostructured porous silicon oxide (PSiO2) is chosen to assess the vapor-phase deposition of PPy-based MIP in nanostructures with aspect ratio >100; human hemoglobin (HHb) is selected as the target molecule for the preparation of a MIP-based PSiO2 optical sensor. High sensitivity and selectivity, low detection limit, high stability and reusability are achieved in label-free optical detection of HHb, also in human plasma and artificial serum. The proposed vapor-phase synthesis of MIPs is immediately transferable to other nanomaterials, transducers, and proteins.  相似文献   
677.
Ene-reductases from the Old Yellow Enzyme (OYE) superfamily are a well-known and efficient biocatalytic alternative for the asymmetric reduction of C=C bonds. Considering the broad variety of substituents that can be tolerated, and the excellent stereoselectivities achieved, it is apparent why these enzymes are so appealing for preparative and industrial applications. Different classes of C=C bonds activated by at least one electron-withdrawing group have been shown to be accepted by these versatile biocatalysts in the last decades, affording a vast range of chiral intermediates employed in the synthesis of pharmaceuticals, agrochemicals, flavours, fragrances and fine chemicals. In order to access both enantiomers of reduced products, stereodivergent pairs of OYEs are desirable, but their natural occurrence is limited. The detailed knowledge of the stereochemical course of the reaction can uncover alternative strategies to orient the selectivity via mutagenesis, evolution, and substrate engineering. An overview of the ongoing studies on OYE-mediated bioreductions will be provided, with particular focus on stereochemical investigations by deuterium labelling.  相似文献   
678.
Smart at- or online process sensors, which employ machine learning (ML) to process data, have been the subject of extensive research in recent years, due to their potential for real-time process control. In this paper, a passive acoustic emission process sensor has been used to detect gas–liquid regimes within a stirred, aerated vessel using novel ML approaches. Pressure fluctuations (acoustic emissions) in an air-water system were recorded using a piezoelectric sensor installed on the external wall of three identical cylindrical tanks of diameter, T = 160 mm, filled to a volume of 5 L (height, H = 1.5 T). The tanks were made of either glass, steel, or aluminium, and each tank was equipped with a Rushton turbine of diameter, D = 0.35 T. The investigated flow regimes, flooding, loading, complete dispersion, and un-gassed, were obtained by changing the air feed flow rates and by varying the impeller speed. The acoustic spectra obtained were processed to select an optimal number of features characterizing each of the regimes, and these were used to train three different ML algorithms. The pre-processing includes a principal component analysis (PCA) step, which reduces the volume of data fed to the ML algorithms, saving computational time up to a factor of 5. The algorithms (decision tree, k-nearest neighbour, and support vector machines) were challenged to use these features to identify the correct flow regime. Accurate predictions of the three gas–liquid regimes of interest have been achieved. The accuracy of the prediction ranges from 90% to 99%, and this difference is related to the material used for the vessel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号