首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4227篇
  免费   197篇
  国内免费   23篇
电工技术   57篇
综合类   12篇
化学工业   713篇
金属工艺   105篇
机械仪表   81篇
建筑科学   134篇
矿业工程   5篇
能源动力   144篇
轻工业   408篇
水利工程   27篇
石油天然气   48篇
武器工业   1篇
无线电   640篇
一般工业技术   613篇
冶金工业   855篇
原子能技术   14篇
自动化技术   590篇
  2023年   20篇
  2022年   44篇
  2021年   69篇
  2020年   40篇
  2019年   60篇
  2018年   68篇
  2017年   145篇
  2016年   68篇
  2015年   65篇
  2014年   113篇
  2013年   240篇
  2012年   170篇
  2011年   245篇
  2010年   172篇
  2009年   168篇
  2008年   171篇
  2007年   152篇
  2006年   141篇
  2005年   165篇
  2004年   150篇
  2003年   131篇
  2002年   104篇
  2001年   88篇
  2000年   94篇
  1999年   84篇
  1998年   218篇
  1997年   133篇
  1996年   93篇
  1995年   64篇
  1994年   90篇
  1993年   87篇
  1992年   61篇
  1991年   41篇
  1990年   46篇
  1989年   48篇
  1988年   41篇
  1987年   36篇
  1986年   45篇
  1985年   44篇
  1984年   29篇
  1983年   28篇
  1982年   34篇
  1981年   39篇
  1980年   48篇
  1979年   29篇
  1978年   25篇
  1977年   26篇
  1976年   30篇
  1975年   22篇
  1974年   20篇
排序方式: 共有4447条查询结果,搜索用时 15 毫秒
71.
Water at the polymer/substrate interface is often the major cause of adhesion loss in coatings, adhesives, and fiber-reinforced polymer composites. This study critically assesses the relationship between the interfacial water layer and the adhesion loss in epoxy/siliceous substrate systems. Both untreated and silane-treated Si substrates and untreated and silane-treated E-glass fibers were used. Thickness of the interfacial water layer was measured on epoxy/Si systems by Fourier transform infrared-multiple total internal reflection (FTIR-MTIR) spectroscopy. Adhesion loss of epoxy/Si systems and epoxy/E-glass fiber composites was measured by peel adhesion and short-beam shear tests, respectively. Little water accumulation at the epoxy/Si substrate interface was observed for silane-treated Si substrates, but about 10 monolayers of water accumulated at the interface between the epoxy and the untreated Si substrate following 100 h of exposure at 24 °C. More than 70% of the initial epoxy/untreated Si system peel strength was lost within 75 h of exposure, compared with 20% loss after 600 h for the silane-treated Si samples. Shear strength loss in composites made with untreated E-glass fiber was nearly twice that of composites fabricated with silane-treated fiber after 6 months of immersion in 60 °C water. Further, the silane-treated composites remained transparent, but the untreated fiber composites became opaque after water exposure. Evidence from FTIR-MTIR spectroscopy, adhesion loss, and visual observation strongly indicated that a water layer at the polymer/substrate interface is mostly responsible for the adhesion loss of epoxy/untreated siliceous substrate systems and epoxy/untreated glass fiber composites and that FTIR-MTIR is a viable technique to reliably and conveniently assess the adhesion loss attributable to water sorption at the interface.  相似文献   
72.
Scheduling with learning effects has gained increasing attention in recent years. A well‐known learning model is called “sum‐of‐processing‐times‐based learning” in which the actual processing time of a job is a nonincreasing function of the jobs already processed. However, the actual processing time of a given job drops to zero precipitously when the normal job processing times are large. Moreover, the concept of learning process is relatively unexplored in a flowshop environment. Motivated by these observations, this article addresses a two‐machine flowshop problem with a truncated learning effect. The objective is to find an optimal schedule to minimize the total completion time. First, a branch‐and‐bound algorithm incorporating with a dominance property and four lower bounds is developed to derive the optimal solution. Then three simulated annealing algorithms are also proposed for near‐optimal solution. The experimental results indicated that the branch‐and‐bound algorithm can solve instances up to 18 jobs, and the proposed simulated annealing algorithm performs well in item of CPU time and error percentage. © 2011 Wiley Periodicals, Inc.  相似文献   
73.
The purpose of this study was to research the compatibility and application of polyvinylpyrrolidone (PVP)/chitosan blended polymers. The polymers were synthesized at different weight ratios and tested using techniques such as Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis to evaluate the compatibility of the blended materials. Incompatibility occurred when the quantity of chitosan exceeded 75%. The addition of PVP was beneficial for the thermal stability of chitosan, but resulted in inferior strength performance. Furthermore, the blended polymers did not show a color‐enhancement effect, but did show elevated water absorption, chlorine resistance, and colorfastness. In addition, the treated fabrics with a higher chitosan ratio in the blended polymer had antimicrobial properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 885–891, 2006  相似文献   
74.
A series of polymer–clay nanocomposite (PCN) materials containing polysulfone (PSF) and layered MMT clay were successfully prepared by effectively dispersing inorganic nanolayers of MMT clay in an organic PSF matrix via a solution dispersion technique. The synthesized PCN materials were subsequently investigated with a series of characterization techniques, including Fourier transform infrared (FTIR) spectroscopy, wide‐angle powder X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The prepared PCN coatings with low clay loading (1 wt %) on cold‐rolled steel (CRS) were found to be superior in corrosion prevention to those of bulk PSF, based on a series of electrochemical measurements of corrosion potential, polarization resistance, corrosion current and electrochemical impedance spectroscopy (EIS) in a 5 wt % aqueous NaCl electrolyte. The effects of material composition on the molecular barrier, mechanical strength and optical clarity of PSF and PCN materials, in the form of membranes, was also studied by molecular permeability analysis (GPA), dynamic mechanical analysis (DMA) and UV‐Visible transmission spectra, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 631–637, 2004  相似文献   
75.
The thermokinetic behavior of blocked polyurethane (PU)–unsaturated polyester (UP)–based composites during the pultrusion of glass‐fiber‐reinforced composites was investigated utilizing a mathematical model that accounted for the heat transfer and heat generation during curing. The equations of continuity and energy balance, coupled with a kinetic expression for the curing system, were solved using a finite difference method to calculate the temperature profiles and conversion profiles in the thickness direction in a rectangular pultrusion die. A kinetic model, dP/dt = A exp(?E/RT)Pm(1 ? P)n, was proposed to describe the curing behavior of a blocked PU–UP resin. Kinetic parameters for the model were obtained from dynamic differential scanning calorimetry scans using a multiple regression technique, which was able to predict the effects of processing parameters on the pultrusion. The effects of processing parameters including pulling speed, die wall temperature, and die thickness on the performance of the pultrusion also were evaluated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1996–2002, 2003  相似文献   
76.
In the context of nonlinear dynamic system identification for Hammerstein systems, Rollins et al. (2003a) studied the information efficiency of the following two competing experimental design approaches: statistical design of experiments (SDOE) and pseudo-random sequences design (PRSD). The focus of this study is the Wiener system and evaluates SDOE against PRS under D-optimal efficiency. Three cases are evaluated and the results strongly support SDOE as the better approach.  相似文献   
77.
Paul Chin  David F. Ollis   《Catalysis Today》2007,123(1-4):177-188
The air–solid photocatalytic degradation of organic dye films Acid Blue 9 (AB9) and Reactive Black 5 (RBk5) is studied on Pilkington Activ™ glass. The Activ™ glass comprises of a colorless TiO2 layer deposited on clear glass. The Activ™ glass is characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD). Using AFM, the TiO2 average agglomerate particle size is 95 nm, with an apparent TiO2 thickness of 12 nm. The XRD results indicate the anatase phase of TiO2, with a calculated crystallite size of 18 nm.

Dyes AB9 and RBk5 are deposited in a liquid film and dried on the Activ™ glass to test for photodecolorization in air, using eight UVA blacklight-blue fluorescent lamps with an average UVA irradiance of 1.4 mW/cm2. A novel horizontal coat method is used for dye deposition, minimizing the amount of solution used while forming a fairly uniform dye layer. About 35–75 monolayers of dye are placed on the Activ™ glass, with a covered area of 7–10 cm2. Dye degradation is observed visually and via UV–vis spectroscopy.

The kinetics of photodecolorization satisfactorily fit a two-step series reaction model, indicating that the dye degrades to a single colored intermediate compound before reaching its final colorless product(s). Each reaction step follows a simple irreversible first-order reaction rate form. The average k1 is 0.017 and 0.021 min−1 for AB9 and RBk5, respectively, and the corresponding average k2 is 2.0 × 10−3 and 1.5 × 10−3 min−1. Variable light intensity experiments reveal a p = 0.44 ± 0.02 exponent dependency of initial decolorization rate on the UV irradiance. Solar experiments are conducted outdoors with an average temperature, water vapor density, and UVA irradiance of 30.8 °C, 6.4 g water/m3 dry air, and 1.5 mW/cm2, respectively. For AB9, the average solar k1 is 0.041 min−1 and k2 is 5.7 × 10−3 min−1.  相似文献   

78.
A new diimide–diacid monomer, N,N′‐bis(4‐carboxyphenyl)‐4,4′‐oxydiphthalimide (I), was prepared by azeotropic condensation of 4,4′‐oxydiphthalic anhydride (ODPA) and p‐aminobenzoic acid (p‐ABA) at a 1:2 molar ratio in a polar solvent mixed with toluene. A series of poly(amide–imide)s (PAI, IIIa–m) was synthesized from the diimide–diacid I (or I′, diacid chloride of I) and various aromatic diamines by direct polycondensation (or low temperature polycondensation) using triphenyl phosphite and pyridine as condensing agents. It was found that only IIIk–m having a meta‐structure at two terminals of the diamine could afford good quality, creasable films by solution‐casting; other PAIs III using diamine with para‐linkage at terminals were insoluble and crystalline; though IIIg–i contained the soluble group of the diamine moieties, their solvent‐cast films were brittle. In order to improve their to solubility and film quality, copoly(amide–imide)s (Co‐PAIs) based on I and mixtures of p‐ABA and aromatic diamines were synthesized. When on equimolar of p‐ABA (m = 1) was mixed, most of Co‐PAIs IV had improved solubility and high inherent viscosities in the range 0.9–1.5 dl g?1; however, their films were still brittle. With m = 3, series V was obtained, and all members exhibited high toughness. The solubility, film‐forming ability, crystallinity, and thermal properties of the resultant poly(amide–imide)s were investigated. © 2002 Society of Chemical Industry  相似文献   
79.
A coiled quartz tubular reactor has been designed to measure the intrinsic reaction kinetics for homogeneous reactions at high temperatures up to 1100°C. Actual gas residence times were less than 100 ms. A simple and well‐studied test reaction (i.e., the decomposition of nitrous oxide, N2O), with published intrinsic kinetics, was used to verify the operation of the experimental reactor. For this system, Peclet numbers (Pe = uL/DL) computed from experimental conversion data were greater than 1000, indicating that the plug flow assumption could be used with this reactor system to determine intrinsic rate expressions with errors of less than 5% for the conditions studied.  相似文献   
80.
Polystyrene‐clay nanocomposite (PsCN) materials were synthesized and their properties of crystallinity, thermal behavior, and dielectric characteristics were investigated. A polymerizable cationic surfactant, [2‐(dimethylamino)ethyl]triphenylphonium bromide, was used for the intercalation of montmorillonite (MMT). The organophilic MMT was prepared by Na+‐exchanged MMT and ammonium cations of a cationic surfactant in an aqueous medium. Organophilic styrene monomers were intercalated into the interlayer regions of organophilic clay hosts followed by a free‐radical polymerization. Exfoliation to 2 wt % MMT in the polystyrene (PS) matrix was achieved as revealed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Thermal properties by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were also studied. The dielectric properties of PsCNs in the form of film with clay loading from 1.0 to 5.0 wt % were measured under frequencies of 100 Hz–1 MHz at 25–70°C. A decreased dielectric constant and low dielectric loss were observed for PsCN materials. The dielectric response at low frequency that originated from dipole orientation was suppressed due to the intercalation of clay materials. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1368–1373, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号