首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1562篇
  免费   76篇
  国内免费   3篇
电工技术   15篇
综合类   1篇
化学工业   381篇
金属工艺   32篇
机械仪表   41篇
建筑科学   64篇
矿业工程   3篇
能源动力   61篇
轻工业   195篇
水利工程   15篇
石油天然气   6篇
武器工业   1篇
无线电   156篇
一般工业技术   293篇
冶金工业   67篇
原子能技术   9篇
自动化技术   301篇
  2024年   2篇
  2023年   26篇
  2022年   54篇
  2021年   66篇
  2020年   55篇
  2019年   60篇
  2018年   57篇
  2017年   56篇
  2016年   50篇
  2015年   53篇
  2014年   67篇
  2013年   128篇
  2012年   99篇
  2011年   147篇
  2010年   92篇
  2009年   73篇
  2008年   100篇
  2007年   68篇
  2006年   59篇
  2005年   41篇
  2004年   43篇
  2003年   46篇
  2002年   32篇
  2001年   15篇
  2000年   8篇
  1999年   8篇
  1998年   17篇
  1997年   11篇
  1996年   14篇
  1995年   13篇
  1994年   10篇
  1993年   11篇
  1992年   4篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   5篇
  1987年   6篇
  1985年   11篇
  1984年   3篇
  1983年   3篇
  1979年   2篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
排序方式: 共有1641条查询结果,搜索用时 11 毫秒
21.
Zn‐air batteries (ZABs) offer promising commercialization perspectives for stretchable and wearable electronic devices as they are environment‐friendly and have high theoretical energy density. However, current devices suffer from limited energy efficiency and durability because of the sluggish oxygen reduction and evolution reactions kinetics in the air cathode as well as degenerative stretchability of solid‐state electrolytes under highly alkaline conditions. Herein, excellent bifunctional catalytic activity and cycling stability is achieved by using a newly developed Co–N–C nanomaterial with a uniform virus‐like structure, prepared via a facile carbonization of a prussian blue analogue (PBA). Furthermore, a solid‐state dual‐network sodium polyacrylate and cellulose (PANa‐cellulose) based hydrogel electrolyte is synthesized with good alkaline‐tolerant stretchability. A solid‐state fiber‐shaped ZAB fabricated using this hydrogel electrolyte, the virus‐like Co–N–Cs air cathode, and a zinc spring anode display excellent stretchability of up to 500% strain without damage, and outstanding electrochemical performance with 128 mW cm?2 peak power density and good cycling stability for >600 cycles at 2 mA. The facile synthesis strategy demonstrated here opens up a new avenue for developing highly active PBA‐derived catalyst and shows, for the first time, that virus‐like structure can be favorable for electrochemical performance.  相似文献   
22.
Parasitic absorption in transparent electrodes is one of the main roadblocks to enabling power conversion efficiencies (PCEs) for perovskite‐based tandem solar cells beyond 30%. To reduce such losses and maximize light coupling, the broadband transparency of such electrodes should be improved, especially at the front of the device. Here, the excellent properties of Zr‐doped indium oxide (IZRO) transparent electrodes for such applications, with improved near‐infrared (NIR) response, compared to conventional tin‐doped indium oxide (ITO) electrodes, are shown. Optimized IZRO films feature a very high electron mobility (up to ≈77 cm2 V?1 s?1), enabling highly infrared transparent films with a very low sheet resistance (≈18 Ω □?1 for annealed 100 nm films). For devices, this translates in a parasitic absorption of only ≈5% for IZRO within the solar spectrum (250–2500 nm range), to be compared with ≈10% for commercial ITO. Fundamentally, it is found that the high conductivity of annealed IZRO films is directly linked to promoted crystallinity of the indium oxide (In2O3) films due to Zr‐doping. Overall, on a four‐terminal perovskite/silicon tandem device level, an absolute 3.5 mA cm?2 short‐circuit current improvement in silicon bottom cells is obtained by replacing commercial ITO electrodes with IZRO, resulting in improving the PCE from 23.3% to 26.2%.  相似文献   
23.
Beyond the catalytic activity of nanocatalysts, the support with architectural design and explicit boundary could also promote the overall performance through improving the diffusion process, highlighting additional support for the morphology-dependent activity. To delineate this, herein, a novel mazelike-reactor framework, namely multi-voids mesoporous silica sphere (MVmSiO2), is carved through a top-down approach by endowing core-shell porosity premade Stöber SiO2 spheres. The precisely-engineered MVmSiO2 with peripheral one-dimensional pores in the shell and interconnecting compartmented voids in the core region is simulated to prove combined hierarchical and structural superiority over its analogous counterparts. Supported with CuZn-based alloys, mazelike MVmSiO2 nanoreactor experimentally demonstrated its expected workability in model gas-phase CO2 hydrogenation reaction where enhanced CO2 activity, good methanol yield, and more importantly, a prolonged stable performance are realized. While tuning the nanoreactor composition besides morphology optimization could further increase the catalytic performance, it is accentuated that the morphological architecture of support further boosts the reaction performance apart from comprehensive compositional optimization. In addition to the found morphological restraints and size-confinement effects imposed by MVmSiO2, active sites of catalysts are also investigated by exploring the size difference of the confined CuZn alloy nanoparticles in CO2 hydrogenation employing both in-situ experimental characterizations and density functional theory calculations.  相似文献   
24.
While Transmission Control Protocol (TCP) Performance Enhancing Proxy (PEP) solutions have long been undisputed to solve the inherent satellite problems, the improvement of the regular end‐to‐end TCP congestion avoidance algorithms and the recent emphasis on the PEPs drawbacks have opened the question of the PEPs sustainability. Nevertheless, with a vast majority of Internet connections shorter than ten segments, TCP PEPs continue to be required to counter the poor efficiency of the end‐to‐end TCP start‐up mechanisms. To reduce the PEPs dependency, designing a new fast start‐up TCP mechanism is therefore a major concern. But, while enlarging the Initial Window (IW) up to ten segments is, without any doubt, the fastest solution to deal with a short‐lived connection in an uncongested network, numerous researchers are concerned about the impact of the large initial burst on an already congested network. Based on traffic observations and real experiments, Initial Spreading has been designed to remove those concerns whatever the load and type of networks. It offers performance similar to a large IW in uncongested network and outperforms existing end‐to‐end solutions in congested networks. In this paper, we show that Initial Spreading, taking care of the satellite specificities, is an efficient end‐to‐end alternative to the TCP PEPs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
25.
Fabrication of high‐quality ultrathin monocrystalline silicon layers and their transfer to low‐cost substrates are key steps for flexible electronics and photovoltaics. In this work, we demonstrate a low‐temperature and low‐cost process for ultrathin silicon solar cells. By using standard plasma‐enhanced chemical vapor deposition (PECVD), we grow high‐quality epitaxial silicon layers (epi‐PECVD) from SiH4/H2 gas mixtures at 175 °C. Using secondary ion mass spectrometry and transmission electron microscopy, we show that the porosity of the epi‐PECVD/crystalline silicon interface can be tuned by controlling the hydrogen accumulation there. Moreover, we demonstrate that 13–14% porosity is a threshold above which the interface becomes fragile and can easily be cleaved. Taking advantage of the H‐rich interface fragility, we demonstrate the transfer of large areas (∽10 cm2) ultrathin epi‐PECVD layers (0.5–5.5 µm) onto glass substrates by anodic bonding and moderate annealing (275–350 °C). The structural properties of transferred layers are assessed, and the first PECVD epitaxial silicon solar cells transferred on glass are characterized. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
26.
Kuka is an important vegetable in the Nigerian food chain. The moisture sorption characteristics of the vegetable studied at 34, 37 and 45°C between aw 0.10–0.96, revealed a BET type II behaviour. The Kuka exhibited hysteresis and an increase in EMC with increase in aw and decrease in temperature. Four sorption models (Oswin, Halsey, Kuhn, and GAB) were studied and the Oswin model was the most suitable. The constants in the Oswin model and GAB monolayer moisture contents were obtained and found to be temperature-dependent. Heats of sorption were greater for desorption than adsorption and in either mode, they reduced with an increase in moisture content. An exponential equation was obtained to relate heat of sorption with moisture content.  相似文献   
27.
Formamide,N-methylformamide,N-dimethylformamide, dimethylsulfoxide, 1,2-butanediol, and 2-butane-1,4-diol were considered as potential extractants of fatty acids from soybean and jojoba oils. Ternary liquid-liquid phase diagrams at 298.15 K, distribution, and selectivity coefficients of oleic acid are reported. Of the investigated solvents, onlyN-methylformamide and 1,2-butanediol have desirable extraction characteristics.  相似文献   
28.
This paper describes a dynamic model of transient heat and mass transfer across a green roof component. The thermal behavior of the green roof layers is modeled and coupled to the water balance in the substrate that is determined accounting for evapotranspiration. The water balance variations over time directly impact the physical properties of the substrate and the evapotranspiration intensity. This thermal and hydric model incorporates wind speed effects within the foliage through a new calculation of the resistance to heat and mass transfer within the leaf canopy. The developed model is validated with experimental data from a one-tenth-scale green roof located at the University of La Rochelle. A comparison between the numerical and the experimental results demonstrates the accuracy of the model for predicting the substrate temperature and water content variations. The heat and mass transfer mechanisms through green roofs are analyzed and explained using the modeled energy balances, and parametric studies of green roof behavior are presented. A surface temperature difference of up to 25 °C was found among green roofs with a dry growing medium or a saturated growing medium. Furthermore, the thermal inertia effects, which are usually simplified or neglected, are taken into account and shown to affect the temperature and flux results. This study highlights the importance of a coupled evapotranspiration process model for the accurate assessment of the passive cooling effect of green roofs.  相似文献   
29.
TOSQAN is an experimental program undertaken by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) in order to perform thermal hydraulic containment studies. The TOSQAN facility is a large enclosure devoted to simulate typical accidental thermal hydraulic flow conditions in nuclear-pressurized water reactor (PWR) containment. The TOSQAN facility which is highly instrumented with non-intrusive optical diagnostics is particularly adapted to nuclear safety CFD code validation. The present work is devoted to studying the interaction of a water spray injection used as a mitigation means in order to reduce the gas pressure and temperature in the containment, to produce gases mixing and washout of fission products. In order to have a better understanding of heat and mass transfers between spray droplets and the gas mixture, and to analyze mixing effects due to spray activation, we perform detailed characterization of the two-phase flow.  相似文献   
30.
Metals and Materials International - MoTaNbVTi refractory high entropy alloy was synthesized by the vacuum arc melting technique in its equi-atomic composition. The modification of its...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号