首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2892篇
  免费   126篇
  国内免费   3篇
电工技术   33篇
化学工业   547篇
金属工艺   40篇
机械仪表   67篇
建筑科学   166篇
矿业工程   11篇
能源动力   152篇
轻工业   242篇
水利工程   25篇
石油天然气   3篇
无线电   265篇
一般工业技术   588篇
冶金工业   201篇
原子能技术   17篇
自动化技术   664篇
  2024年   5篇
  2023年   21篇
  2022年   48篇
  2021年   66篇
  2020年   51篇
  2019年   62篇
  2018年   65篇
  2017年   78篇
  2016年   99篇
  2015年   73篇
  2014年   113篇
  2013年   206篇
  2012年   200篇
  2011年   256篇
  2010年   162篇
  2009年   156篇
  2008年   177篇
  2007年   155篇
  2006年   131篇
  2005年   109篇
  2004年   99篇
  2003年   81篇
  2002年   75篇
  2001年   55篇
  2000年   39篇
  1999年   34篇
  1998年   44篇
  1997年   39篇
  1996年   25篇
  1995年   31篇
  1994年   20篇
  1993年   9篇
  1992年   16篇
  1991年   17篇
  1990年   14篇
  1989年   9篇
  1988年   11篇
  1987年   10篇
  1986年   12篇
  1985年   12篇
  1984年   16篇
  1983年   17篇
  1982年   9篇
  1981年   10篇
  1980年   9篇
  1979年   11篇
  1977年   11篇
  1976年   8篇
  1975年   11篇
  1973年   6篇
排序方式: 共有3021条查询结果,搜索用时 15 毫秒
991.
992.
Dissolved organic matter (DOM) in surface waters affects the fate and environmental effects of trace metals. We measured variability in the Cd, Cu, Ni, and Zn affinity of 23 DOM samples isolated by reverse osmosis from freshwaters in natural, agricultural, and urban areas. Affinities at uniform pH and ionic composition were assayed at low, environmentally relevant free Cd, Cu, Ni, and Zn activities. The C-normalized metal binding of DOM varied 4-fold (Cu) or about 10-fold (Cd, Ni, Zn) among samples. The dissolved organic carbon concentration ranged only 9-fold in the waters, illustrating that DOM quality is an equally important parameter for metal complexation as DOM quantity. The UV-absorbance of DOM explained metal affinity only for waters receiving few urban inputs, indicating that in those waters, aromatic humic substances are the dominant metal chelators. Larger metal affinities were found for DOM from waters with urban inputs. Aminopolycarboxylate ligands (mainly EDTA) were detected at concentrations up to 0.14 μM and partly explained the larger metal affinity. Nickel concentrations in these surface waters are strongly related to EDTA concentrations (R2=0.96) and this is underpinned by speciation calculations. It is concluded that metal complexation in waters with anthropogenic discharges is larger than that estimated with models that only take into account binding on humic substances.  相似文献   
993.
Nanoparticles can be used to improve the delivery of many drugs, especially peptides and proteins. Although several methods are available for polymeric nanoparticle preparation, there are few single-stage processes that produce dry, solid nanoparticles that can be easily re-dispersed in pharmaceutical vehicles. The aerosol flow reactor method is a single-stage process that has been used for the preparation of multicomponent, coated nanoparticles under uniform temperature and gas flow field. However, it is traditionally used with high synthesis temperatures. In the present study, the aerosol flow reactor method was further optimized for processing and surface stabilization of pharmaceutical nanoparticles containing temperature sensitive biomolecules. In the developed method, drug-loaded carrier nanoparticles consisting of a biodegradable polymer (Eudragit L100) and a drug (phenylephrine hydrochloride) were first produced by aerosol droplet drying and subsequently coated in the gas phase. The carrier particles were coated with l-leucine in order to inhibit agglomeration of the nanoparticles in solutions before administration. In the coating process, a side stream of l-leucine vapor was directed into the main aerosol flow containing the drug-loaded carriers. The mixing with the main flow at ambient temperature induced a supersaturation of l-leucine vapor and condensation on the carrier particles. The results demonstrate that solid, hydrodynamically stable drug-loaded polymeric nanoparticles can be produced with a thin l-leucine coating. The low process temperature enables the surface engineering of particles loaded with temperature sensitive drugs or bioactive materials to be utilized for drug delivery purposes.  相似文献   
994.
Biomolecules adsorb at fluid–fluid interfaces and can form a cohesive interfacial network imparting distinctive local interfacial mechanics. This modification of interfacial behavior is empirically known to significantly affect the stability and flow behavior of foams and emulsions. Droplet formation in the presence of interfacial networks is investigated in a flow‐focusing microfluidic device using designed peptide surfactants, which allow decoupled control of interfacial rheology and interfacial tension. The influence of interfacial elasticity on droplet breakup, satellite droplet formation and droplet size are reported. The presence of high interfacial elasticity strongly affects the mechanism of droplet breakup by delaying neck thinning and altering interfacial shape at the point of droplet detachment, resulting in the suppression of satellite droplet formation and a decrease in droplet size. We report a correlation between dimensionless droplet size and a new dimensionless grouping which combines flow‐rate ratio with the ratio of interfacial tension and interfacial elasticity. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   
995.
A GC-MS method to analyze the stereoisomeric composition of chiral secondary alcohols found in whole body extracts of pine sawfly females was developed. The tested alcohols were derivatized with optically pure (S)-2-acetoxypropionyl chloride prior to GC-MS analysis. Baseline separation was obtained for all sixteen stereoisomers of 3,7,9-trimethyltridecan-2-ol and for the four 3-methylpentadecan-2-ol stereoisomers. For 3,7-dimethyltridecan-2-ol, 3,7-dimethyltetradecan-2-ol and 3,7-dimethylpentadecan-2-ol baseline separation was obtained for 6 of the possible 8 stereoisomers. When a mixture of 16 stereoisomers of 3,7,11-trimethyltridecan-2-ol was tested, baseline separation of 7 peaks out of 16 possible was obtained. The investigated alcohols are pheromone precursors for some pine sawfly species that are severe defoliators of pine. Females from several Diprion, Neodiprion, Macrodiprion, Microdiprion, and Gilpinia species emit esters of such secondary alcohols as sex pheromones that attract males for mating. To quantify the small amounts of the precursor alcohol and its stereoisomeric composition found in whole body extracts from female pine sawflies, a purification method was optimized. An extract of 20 females of D. pini contained about 8 ng of (2S,3R,7R)-3,7-dimethyltridecan-2-ol per female, and three extracts of 18, 20, and 90 females of N. sertifer contained between 5 and 13 ng of (2S,3S,7S)-3,7-dimethylpentadecan-2-ol per female.  相似文献   
996.
Boron (B) deficiency is a common micronutrient deficiency that has been reported to affect the phenolic metabolism of plants. Thus, it may play a role in defense against herbivorous animals. However, the role of B in a plant’s resistance to herbivores has not received any particular attention from researchers. In this study, we tested the effects of B nutrition 1) on the biochemical and mechanical defenses of birches and the growth of seedlings, and 2) the resistance of seedlings to larvae of the autumnal moth, Epirrita autumnata. Boron fertilization improved the resistance of birch, which was shown as reduced pupal weight of the herbivore. However, B fertilized trees suffered from heavier defoliation than unfertilized ones due to compensation feeding of larvae. The growth of the seedlings was diminished, and several biochemical changes occurred in leaves of herbivore seedlings, and B also played a role in these changes. Polyphenoloxidases (PPOs) and peroxidases (PODs) and their substrates, chlorogenic acids, were induced by herbivory in B fertilized seedlings but not in unfertilized seedlings. The lower pupal weights and increased consumption of the herbivores were probably linked to the plants’ phenoloxidase-mediated production of reactive quinones, which decrease the nutritive value. Herbivory upon new stems led to an increase in the number of resin glands that provide defense against mammalian herbivores. Herbivory also had a substantially negative effect on B concentration in leaves of B fertilized seedlings. We postulate that B nutrition of trees may play a significant role in the induced defense of birches.  相似文献   
997.
Nutritional influences on cardiovascular disease operate throughout life. Studies in both experimental animals and humans have suggested that changes in the peri- and early post-natal nutrition can affect the development of the various components of the metabolic syndrome in adult life. This has lead to the hypothesis that n-3 fatty acid supplementation in pregnancy may have a beneficial effect on lipid profile in the offspring. The aim of the present study was to investigate the effect of supplementation with n-3 fatty acids during the third trimester of pregnancy on lipids and lipoproteins in the 19-year-old offspring. The study was based on the follow-up of a randomized controlled trial from 1990 where 533 pregnant women were randomized to fish oil (n = 266), olive oil (n = 136) or no oil (n = 131). In 2009, the offspring were invited to a physical examination including blood sampling. A total of 243 of the offspring participated. Lipid values did not differ between the fish oil and olive oil groups. The relative adjusted difference (95% confidence intervals) in lipid concentrations was −3% (−11; 7) for LDL cholesterol, 3% (−3; 10) for HDL cholesterol, −1% (−6; 5) for total cholesterol,−4% (−16; 10) for TAG concentrations, 2%(−2; 7) for apolipoprotein A1, −1% (−9; 7) for apolipoprotein B and 3% (−7; 15) in relative abundance of small dense LDL. In conclusion, there was no effect of fish oil supplementation during the third trimester of pregnancy on offspring plasma lipids and lipoproteins in adolescence.  相似文献   
998.
The transient behavior of burner-supported spherical diffusion flames was studied in the transport-induced limit of low mass flow rate and the radiation-induced limit of high mass flow rate which characterize the isola response of flame extinction. Oscillatory instability was observed near both steady-state extinction limits. The oscillation typically grows in amplitude until it becomes large enough to extinguish the flame. The oscillatory behavior was numerically observed using detailed chemistry and transport for methane (50%CH4/50%He into 21%O2/79%He) and hydrogen (100% H2 into 21%O2/79%He) diffusion flames where the fuel was issued from a point source, and helium was selected as an inert to increase the Lewis number, facilitating the onset of oscillation. In both methane and hydrogen flames, the oscillation always leads to extinction, and no limit cycle behavior was found. The growth rate of the oscillation was found to be slow enough under certain conditions to allow the flame to oscillate for over 450 s, suggesting that such oscillations can possibly be observed experimentally. For the hydrogen flames, however, the frequency of oscillation near the transport-induced limit is much larger, approximately 60 Hz as compared to 0.35 Hz for the methane flame, and the maximum amplitude of temperature oscillations was about 5 K. The distinctively different structures of the hydrogen and methane flames suggest that while both instabilities are thermal-diffusive in origin, oscillations in the hydrogen flames resemble those of premixed flames, while oscillations in the methane flames are non-premixed in character.  相似文献   
999.
Design specifications for the support structures of low temperature instrumentation often call for low thermal conductivity between temperature stages, high stiffness, and specific load bearing capabilities. While overall geometric design plays an important role in both overall stiffness and heat conduction between stages, material selection can affect a structure’s properties significantly. In this contribution, we suggest and compare several alternative materials to the current standard materials for building cryogenic support structures.  相似文献   
1000.
We discuss explicit coupling schemes for fluid‐structure interaction problems where the added mass effect is important. In this paper, we show the close relation between coupling schemes by using Nitsche's method and a Robin–Robin type coupling. In the latter case, the method may be implemented either using boundary integrals of the stresses or the more conventional discrete lifting operators. Recalling the explicit method proposed in Comput. Methods Appl. Mech. Engrg. 198(5‐8):766–784, 2009, we make the observation that this scheme is stable under a hyperbolic type CFL condition, but that optimal accuracy imposes a parabolic type CFL conditions because of the splitting error. Two strategies to enhance the accuracy of the coupling scheme under the hyperbolic CFL‐condition are suggested, one using extrapolation and defect‐correction and one using a penalty‐free non‐symmetric Nitsche method. Finally, we illustrate the performance of the proposed schemes on some numerical examples in two and three space dimensions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号