首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   10篇
电工技术   1篇
化学工业   23篇
金属工艺   7篇
机械仪表   7篇
建筑科学   7篇
能源动力   11篇
轻工业   7篇
水利工程   1篇
石油天然气   4篇
无线电   8篇
一般工业技术   17篇
冶金工业   3篇
自动化技术   19篇
  2023年   3篇
  2021年   7篇
  2020年   8篇
  2019年   13篇
  2018年   8篇
  2017年   8篇
  2016年   10篇
  2015年   7篇
  2014年   8篇
  2013年   6篇
  2012年   7篇
  2011年   11篇
  2010年   4篇
  2009年   6篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2000年   1篇
  1988年   1篇
  1967年   1篇
排序方式: 共有115条查询结果,搜索用时 30 毫秒
51.
In this study, microcellular foaming of low‐density polyethylene (LDPE) using nano‐calcium carbonate (nano‐CaCO3) were carried out. Nanocomposite samples were prepared in different content in range of 0.5–7 phr nano‐CaCO3 using a twin screw extruder. X‐ray diffraction and scanning electron microscopy (SEM) were used to characterize of LDPE/nano‐CaCO3 nanocomposites. The foaming was carried out by a batch process in compression molding with azodicarbonamide (ADCA) as a chemical blowing agent. The cell structure of the foams was examined with SEM, density and gel content of different samples were measured to compare difference between nanocomposite microcellular foam and microcellular foam without nanomaterials. The results showed that the samples containing 5 phr nano‐CaCO3 showed microcellular foam with the lowest mean cell diameter 27 μm and largest cell density 8 × 108 cells/cm3 in compared other samples. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   
52.
The paper deals with modeling the convective drying process. A relevant and reliable mathematical model that captures the history and distribution of temperature is presented. The attention is focused on the simultaneous heat and mass transfer occurring during drying where dry and hot air flows about the food. In the present study, external resistance to mass transfer is considered negligible. As a result, the drying curve is almost independent of the boundary conditions, which means that drying is diffusion-controlled. The main connotation of present study regards to undertake analytical procedure to establish the novel model for practical applications. The results show that the temperature evolution can be evaluated from an advanced analytical solution in a quick and efficient manner. The model is validated with the literature experimental data obtained for carrot and mango slabs. A good agreement is obtained between the model predictions and the available experimental results.  相似文献   
53.
Multimedia Tools and Applications - Illegal camcording as the most common source of video piracy, is the main concern of the film production companies. With the increased speed and convenience of...  相似文献   
54.
In this study, a steady-state analytical model for heat and mass transfer in a 2D micro-reactor coated with a Nickel-based catalyst is developed to investigate microscale hydrogen production. Appropriate correlations for each species’ net rate of production or consumption, mass diffusivity, and the heat of reactions are developed using a detailed reaction mechanism of methane steam reforming. The energy and species conservation equations are then solved for the reactive mixture coupled with the wall energy equation. Finally, the response surface methodology (RSM) is employed to study the effects of channel height, inlet velocity and temperature, wall thickness and conductivity, and external heat flux on CH4 conversion. It is found that the inlet gas temperature, among different parameters, has the most influence on the overall performance of the microchannel hydrogen production. Also, the maximum necessary heat of reforming reaction increases by 84% and 26% if the CH4 conversion changes from 50% to 60% and 60% to 70%, respectively. The developed analytical simulation can be a useful tool for designing experiments in micro-scale hydrogen production.  相似文献   
55.
The present study was carried out to investigate the kinetics and the surface chemistry of the oxide layers formed on the IN-738LC super alloy during high-temperature oxidation at 950 °C in air from 1 to 260 h. Oxidation kinetics were studied by mass gain measurement. The oxide layers were characterized by field emission scanning electron microscope, elemental distribution map, energy-dispersive spectroscopy as well as x-ray diffractometry (XRD). The oxidation kinetics followed the parabolic law. The XRD analysis revealed that the oxide scale contained mainly NiO, Ni (Cr, Al)2O4, Al2O3, TiO2 and Cr2O3. The oxide structure, from the top surface down to the substrate, was clarified by elemental map distribution studies as Ni-Ti oxides, Cr-Ti oxides, Cr2O3 oxide band, Ni-Co-Cr-W oxide and finally a blocky Al2O3 region. The oxidation scales were composed of three distinct layers of the outer and mid layers enriched by TiO2 and Cr2O3, NiCr2O4 oxide, respectively, and the innermost layer was composed of Al2O3 and matrix alloy. The depleted gamma prime layer was formed under the oxidation scales due to the impoverishment of Al and Ti which were induced by the formation of Al2O3 and TiO2.  相似文献   
56.
E. BaratiJ.A. Esfahani 《Energy》2011,36(4):2294-2301
The present study describes the modeling and simulation of the drying process. The model considers fundamentals of the drying process and takes internal resistance to moisture into account. The main connotation of this study regards the possibility of employing a new analytical method for simultaneous heat and mass transfer. The proposed model considers the evaporative heat transfer at the surface of product. The validation of the model is made with a set of numerical and experimental results reported in the literature for carrot sliced in slab form. The results reveal that there is nearly perfect match between the temperature and moisture obtained by the analytical model and the numerical solution.  相似文献   
57.
The development of the new technologies of bone tissue engineering requires the production of bioactive and biodegradable macroporous scaffolds. Hydroxyapatite (HA) ceramics are useful bone substitutes, but they degrade minimally. Tricalcium phosphates also show poor ability of Ca-P formation both in-vitro and in-vivo, although they are degradable. The present study introduces a biodegradable, bioactive, and macroporous scaffold with suitable mechanical properties. The prepared hydroxyapatite scaffold was coated with a nanocrystalline bioactive glass layer to be subsequently sintered at different temperatures. The bioactivity and degradability of the coated scaffolds were investigated by standard procedures. The ability to induce Ca-P formation in SBF (simulated body fluid) was also investigated semi-quantitatively. BS1 scaffolds (scaffolds sintered at 800 °C with a holding time of 2 h) showed remarkable bioactivity and degradability simultaneously. Formation of a nanocrystalline phase (Si2PO7) during the sintering considerably decreased the capability of BS1 scaffolds for Ca-P formation and the rate of degradation but enhanced their mechanical properties. The BS1 scaffolds showed not only significant bioactivity but also good degradability and suitable mechanical property.  相似文献   
58.
Radio frequency wave absorber nanocomposites based on a flexible polyurethane (PU) foam has been manufactured by impregnation of the foam in n‐hexane solution of room temperature vulcanizing silicone rubber (SR), hybridized with graphite nanosheets (GNs) called doping solution. After impregnation, dried samples were kept at ambient temperature for the curing of the soaked graphitized SR. To evaluate the influences of the PU foam structural parameters on electrical conductivity, permittivity, and reflection loss characteristics, various foams with different structures were impregnated in the crosslinkable doping solution. Electrical conductivity, real, and imaginary parts of permittivity were measured within the frequency range of 4–6 GHz via performing waveguide measurements. The coarse thick wall PU foam sample exhibited higher conductivity and permittivity than the fine wire mesh sample having similar amounts of conductive SR/GN doping agent. Moreover, nanocomposites based on coarse foam samples showed higher potential for the wave absorption at lower absorber thickness than the fine wire mesh PU foam. The higher conductivity and hence imaginary permittivity of the coarse structure is attributed to the better coincidence of conductive paths in the PU/SR/GN nanocomposite foam with lines of electric field of the incident wave. The higher real permittivity of the coarse nanocomposite is suggested to be related to the more mutual interactions between graphite nanolayers and aggregates which form a network of minicapacitors in the structure of nanocomposites, leading to a higher capacitance and hence more real permittivity. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   
59.
In the current study, aluminum coating was deposited on mild steel by arc spraying. A well-adhered coating with low level of porosity was successfully obtained. To evaluate the corrosion behavior of the coating, electrochemical impedance spectroscopy (EIS) and polarization tests in 3.5% NaCl solution were carried out. The as-coated samples were also subjected to a 1500-h salt spray assay. Polarization tests indicated that the corrosion current density of the aluminum coating is more than that of bulk aluminum. This could be due to the penetration of the electrolyte through open pores, resulted in the acceleration of aluminum corrosion. EIS measurements showed that the corrosion performance of the coating is improved during a long time immersion and exposure to saline mist. This could be due to plugging of pores by corrosion products which hinder further penetration of the electrolyte through the coating. The results obtained indicated that twin wire arc sprayed aluminum coatings can reliably protect steel structures against corrosion in chloride-containing aqueous solutions.  相似文献   
60.
In the first section of this research, superparamagnetic nanoparticles (NPs) (Fe3 O4) modified with hydroxyapatite (HAP) and zirconium oxide (ZrO2) and thereby Fe3 O4 /HAP and Fe3 O4 /ZrO2 NPs were synthesised through co‐precipitation method. Then Fe3 O4 /HAP and Fe3 O4 /ZrO2 NPs characterised with various techniques such as X‐ray photoelectron spectroscopy, X‐ray diffraction, scanning electron microscopy, energy dispersive X‐ray analysis, Brunauer–Emmett–Teller, Fourier transform infrared, and vibrating sample magnetometer. Observed results confirmed the successful synthesis of desired NPs. In the second section, the antibacterial activity of synthesised magnetic NPs (MNPs) was investigated. This investigation performed with multiple microbial cultivations on the two bacteria; Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Obtained results proved that although both MNPs have good antibacterial properties, however, Fe3 O4 /HAP NP has greater antibacterial performance than the other. Based on minimum inhibitory concentration and minimum bactericidal concentration evaluations, S. aureus bacteria are more sensitive to both NPs. These nanocomposites combine the advantages of MNP and antibacterial effects, with distinctive merits including easy preparation, high inactivation capacity, and easy isolation from sample solutions by the application of an external magnetic field.Inspec keywords: nanocomposites, X‐ray chemical analysis, microorganisms, magnetic particles, scanning electron microscopy, precipitation (physical chemistry), nanomagnetics, X‐ray diffraction, X‐ray photoelectron spectra, nanoparticles, superparamagnetism, iron compounds, antibacterial activity, biomedical materials, nanomedicine, calcium compounds, nanofabrication, Fourier transform infrared spectra, magnetometers, zirconium compoundsOther keywords: antibacterial effects, antibacterial property, superparamagnetic nanoparticles, X‐ray photoelectron spectroscopy, X‐ray diffraction, X‐ray analysis, antibacterial activity, bactericidal concentration, S. aureus bacteria, Staphylococcus aureus, Escherichia coli, hydroxyapatite, coprecipitation method, scanning electron microscopy, energy dispersive X‐ray analysis, Brunauer‐Emmett‐Teller method, Fourier transform infrared spectroscopy, vibrating sample magnetometer, microbial cultivations, nanocomposites  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号