The optical band-gap energy (E(g)) is an important feature of semiconductors which determines their applications in optoelectronics. Therefore, it is necessary to investigate the electronic states of ceramic ZnO and the effect of doped impurities under different processing conditions. E(g) of the ceramic ZnO + xBi(2)O(3) + xTiO(2), where x = 0.5 mol%, was determined using a UV-Vis spectrophotometer attached to a Reflectance Spectroscopy Accessory for powdered samples. The samples was prepared using the solid-state route and sintered at temperatures from 1140 to 1260 °C for 45 and 90 minutes. E(g) was observed to decrease with an increase of sintering temperature. XRD analysis indicated hexagonal ZnO and few small peaks of intergranular layers of secondary phases. The relative density of the sintered ceramics decreased and the average grain size increased with the increase of sintering temperature. 相似文献
The mutual separation of a mixture of cetyltrimethyl ammonium chloride (CTAC), methyl trioctyl ammonium bromide (MTOB), dodecyltrimethyl ammonium chloride (DTAC), benzyltrimethyl ammonium chloride (BTAC) and tetrabutyl ammonium bromide (TBAB), was achieved on silica high performance thin layer chromatographic plates using dimethyl sulfoxide with aqueous sodium-l-tartrate dibasic dihydrate as the solvent system. The effect of concentration of sodium-l-tartrate dibasic dihydrate on the mobility of all the five quaternaries was examined. The limit of detection of CTAC, MTOB, DTAC, BTAC and TBAB was estimated as 0.6, 0.6, 0.3, 0.6 and 0.3 μg/zone, respectively. The method developed was utilized to identify these surfactants in different spiked water samples after their preliminary separation. 相似文献
In order to compare the magnitudes and health impacts of arsenic and other toxic trace elements in well water, groundwater and hair samples were collected from three areas with different arsenic exposure scenarios in the Mekong River basin of Cambodia. Ampil commune in Kampong Cham province was selected as an uncontaminated area, Khsarch Andaet commune in Kratie province was selected as a moderately contaminated area, and Kampong Kong commune in Kandal Province was selected as an extremely contaminated area. Results of ICP-MS analyses of the groundwater samples revealed that As, Mn, Fe and Ba concentrations were significantly different among the three study areas (Kruskal-Wallis test, p < 0.0001). Out of 46 observed wells in the Kandal province study area, 100% detected As > 50 μg L−1 and Fe > 300 μg L−1; 52.17% had Mn > 400 μg L−1 and 73.91% found Ba > 700 μg L−1. In the Kratie province study area (n = 12), 25% of wells showed elevated arsenic levels above 10 μg L−1 and 25% had Mn > 400 μg L−1, whereas samples from Kampong Cham province study area (n = 18) were relatively clean, with As < 10 μg L−1. A health risk assessment model derived from the USEPA was applied to calculate individual risks resulting from drinking groundwater. Computational results indicated that residents from Kandal Province study area (n = 297) confronted significantly higher non-carcinogenic and carcinogenic risks than those in Kratie (n = 89) and Kampong Cham (n = 184) province study areas (Kruskal-Wallis test, p < 0.0001). 98.65% of respondents from the Kandal province study area were at risk for the potential non-cancer effect and an average cancer risk index was found to be 5 in 1000 exposure. The calculations also indicated that, in the Kratie province study area, 13.48% of respondents were affected by non-cancer health risks and 33.71% were threatened by cancer, whereas none of respondents in the Kampong Cham province study area appeared to have non-carcinogenic effect. Positively significant correlations of the arsenic content in scalp hair (Ash) with both arsenic levels in groundwater (Asw) (rs (304) = 0.757, p < 0.0001) and individual average daily doses (ADD) of arsenic (rs (304) = 0.763, p < 0.0001) undoubtedly indicated that arsenic accumulation in the bodies of Cambodia residents in the Mekong River basin was mainly through a groundwater drinking pathway. To the best of our knowledge, this is the first comprehensive report comparing individual health risk assessments of arsenic exposure through a groundwater drinking pathway to enriched arsenic levels from groundwater in the Mekong River basin, Cambodia. This study indicates that elevated arsenic concentrations in groundwater may lead to thousands of cases of arsenicosis in the near future if mitigating actions are not taken. 相似文献
Theoretical analysis of potential distribution in the interdigital-gated high electron mobility transistor (HEMT) plasma wave device was carried out. The dc I–V characteristics of capacitively coupled interdigital structure showed that uniformity of electric field under the interdigital gates was improved compared to the dc-connected interdigital gate structure. Admittance measurements of capacitively coupled interdigital gate structure in the microwave region of 10–40 GHz showed the conductance modulation by drain–source voltage. These results indicate the existence of plasma wave interactions. 相似文献
The smart grid control applications necessitate real-time communication systems with time efficiency for real-time monitoring, measurement, and control. Time-efficient communication systems should have the ability to function in severe propagation conditions in smart grid applications. The data/packet communications need to be maintained by synchronized timing and reliability through equally considering the signal deterioration occurrences, which are propagation delay, phase errors and channel conditions. Phase synchronization plays a vital part in the digital smart grid to get precise and real-time control measurement information. IEEE C37.118 and IEC 61850 had implemented for the synchronization communication to measure as well as control the smart grid applications. Both IEEE C37.118 and IEC 61850 experienced a huge propagation and packet delays due to synchronization precision issues. Because of these delays and errors, measurement and monitoring of the smart grid application in real-time is not accurate. Therefore, it has been investigated that the time synchronization in real-time is a critical challenge in smart grid applications, and for this issue, other errors raised consequently. The existing communication systems are designed with the phasor measurement unit (PMU) along with communication protocol IEEE C37.118 and uses the GPS timestamps as the reference clock stamps. The absence of GPS increases the clock offsets, which surely can hamper the synchronization process and the full control measurement system that can be imprecise. Therefore, to reduce this clock offsets, a new algorithm is needed which may consider any alternative reference timestamps rather than GPS. The revolutionary Artificial Intelligence (AI) enables the industrial revolution to provide a significant performance to engineering solutions. Therefore, this article proposed the AI-based Synchronization scheme to mitigate smart grid timing issues. The backpropagation neural network is applied as the AI method that employs the timing estimations and error corrections for the precise performances. The novel AIFS scheme is considered the radio communication functionalities in order to connect the external timing server. The performance of the proposed AIFS scheme is evaluated using a MATLAB-based simulation approach. Simulation results show that the proposed scheme performs better than the existing system.
An electronic nose was successfully used to detect and discriminate lard from other types of animal body fats and samples containing lard. The results are presented in the form of VaporPrint™, the image of the polar plot of the odor amplitudes from the surface acoustic wave (SAW) detector frequency. In the VaporPrint™, the radial angles representing the sensor provides individual fingerprints of the aroma of different animal body fats. Principal component analysis (PCA) was used to interpret the data and it provided a good grouping of samples, with 61% of the variation accounted for by PC 1 and 29% accounted for by PC 2. All of the lard-containing samples formed a separate group from the samples that were free from lard. This method can be developed into a rapid method for detecting the presence of lard in food samples for Halal authentication. 相似文献